几何学小课堂:非欧几何(广义相对论采用黎曼几何作为数学工具)【学数学关键是要学会在什么情况下,知道使用什么工具。】
文章目录
- 引言
- I 非欧几何
- 1.1 黎曼几何
- 1.2 共形几何
- 1.3 罗氏几何
- II 黎曼几何的应用
- 2.1 广义相对论
- 2.2 超弦
- III 理解不同的几何体系的共存
- 3.1 更扎实的欧氏几何
- 3.2 殊途同归
引言
公理有错会得到两种情况:
-
如果某一条自己设定的新公理和现有的公理相矛盾,那么相应的知识体系就建立不起来。
-
如果那一条和现实世界并不相符的公理和其它的公理没有矛盾,那么就可以根据逻辑推出一个和之前不同的知识体系,这个体系也能自洽,但是可能和其它知识体系相矛盾。
三个等价的几何学“工具”
- 欧氏几何
- 黎曼几何
- 罗氏几何
在解决具体问题时选用一个方便的工具,就成为了活学活用数学的技巧了。基于新的假设,创造出一个和别人不同的东西时,或许在特定场合有用。
I 非欧
相关文章:
几何学小课堂:非欧几何(广义相对论采用黎曼几何作为数学工具)【学数学关键是要学会在什么情况下,知道使用什么工具。】
文章目录 引言I 非欧几何1.1 黎曼几何1.2 共形几何1.3 罗氏几何II 黎曼几何的应用2.1 广义相对论2.2 超弦III 理解不同的几何体系的共存3.1 更扎实的欧氏几何3.2 殊途同归引言 公理有错会得到两种情况: 如果某一条自己设定的新公理和现有的公理相矛盾,那么相应的知识体系就建…...
Ubuntu配置静态IP的方法
Ubuntu配置静态IP的方法前言一、查看虚机分配的网卡IP二、查看网卡的网关IP三、配置静态IP1.配置IPv4地址2.执行netplan apply使改动生效3.配置的网卡未生效,修改50-cloud-init.yaml文件解决4.测试vlan网络通信总结前言 Ubuntu18.04 欧拉环境 vlan网络支持ipv6场景…...
90%的人都不算会爬虫,这才是真正的技术,从0到高手的进阶
很多人以为学会了urlib模块和xpath等几个解析库,学了Selenium就会算精通爬虫了,但到外面想靠爬虫技术接点私活,才发现寸步难行。 龙叔我做了近20年的程序员,今天就告诉你,真正的爬虫高手应该学哪些东西,就…...
排序之损失函数List-wise loss(系列3)
排序系列篇: 排序之指标集锦(系列1)原创 排序之损失函数pair-wise loss(系列2)排序之损失函数List-wise loss(系列3) 最早的关于list-wise的文章发表在Learning to Rank: From Pairwise Approach to Listwise Approach中,后面陆陆续续出了各种变形&#…...
js对象和原型、原型链的关系
JS的原型、原型链一直是比较难理解的内容,不少初学者甚至有一定经验的老鸟都不一定能完全说清楚,更多的"很可能"是一知半解,而这部分内容又是JS的核心内容,想要技术进阶的话肯定不能对这个概念一知半解,碰到…...
【SpringBoot高级篇】SpringBoot集成Sharding-JDBC分库分表
【SpringBoot高级篇】SpringBoot集成Sharding-JDBC分库分表Apache ShardingSphere分库分表分库分表的方式垂直切分垂直分表垂直分库水平切分水平分库水平分表分库分表带来的问题分库分表中间件Sharding-JDBCsharding-jdbc实现水平分表sharding-jdbc实现水平分库sharding-jdbc实…...
Shell特殊字符
shell语言,一些字符是有特殊意义的。 根据作用分为几种特殊符号 一、空白 shell调用函数,不像c语言那样用把参数放到括号里,用逗号分隔。而是用空格作为参数之间,参数与函数名之间的分隔符。 换行符也是特殊字符。换行符用作一条命…...
【计算机二级python】综合题目
计算机二级python真题 文章目录计算机二级python真题一、德国工业战略规划二、德国工业战略规划 第一问三、德国工业战略规划 第二问一、德国工业战略规划 描述:在右侧答题模板中修改代码,删除代码中的横线,填写代码,完成考试答案。…...
字节直播leader面
设计评论系统(缓存怎么做) mysql是否有主从延迟,如何解决 mysql有主从延迟 主从延迟主要因为mysql主从同步的机制,mysql有三种同步机制 同步复制:事务线程等待所有从库复制成功响应异步复制:事务不等待…...
PIC 单片机的时钟
注意:本文的内容无法保证绝对精确,后续可能会做改动,只是自己的笔记。这里的资料均源自数据手册本身。PIC18系列单片机的参考时钟可以选择三个基础时钟源:Primary Clock, OSC1 or OSC2,Secondary Clock,Inner clock.时钟源分为两个…...
【数据结构】关于二叉树你所应该知道的数学秘密
目录 1.什么是二叉树(可以跳过 目录跳转) 2.特殊的二叉树(满二叉树/完全二叉树) 2.1 基础知识 2.2 满二叉树 2.3 完全二叉树 3.二叉树的数学奥秘(主体) 3.1 高度与节点个数 3.2* 度 4.运用二叉树的…...
哈希表题目:猜数字游戏
文章目录题目标题和出处难度题目描述要求示例数据范围解法一思路和算法代码复杂度分析解法二思路和算法代码复杂度分析题目 标题和出处 标题:猜数字游戏 出处:299. 猜数字游戏 难度 4 级 题目描述 要求 你在和朋友一起玩猜数字(Bulls…...
项目请求地址自动加上了本地ip的解决方式
一般情况下来说都是一些粗心大意的问题导致的 场景一:少加了/ 场景二:前后多加了空格 场景三:拼接地址错误![...
Vue3 企业级项目实战:项目须知与课程约定
本节内容很重要,希望大家能够耐心看完。 Vue3 企业级项目实战 - 程序员十三 - 掘金小册Vue3 Element Plus Spring Boot 企业级项目开发,升职加薪,快人一步。。「Vue3 企业级项目实战」由程序员十三撰写,2744人购买https://s.ju…...
传导EMI抑制-Π型滤波器设计
1 传导电磁干扰简介 在开关电源中,开关管周期性的通断会产生周期性的电流突变(di/dt)和电压突变(dv/dt),周期性的电流变化和电压变化则会导致电磁干扰的产生。 图1所示为Buck电路的电流变化,在Buck电路中上管电流和下…...
如何在excel中创建斐波那契数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:…...
遮挡检测--基于角度的遮挡检测方法
文章目录1基于角度的遮挡检测方法2遮挡检测遍历方法2.1方法1--自适应径向扫描方法2.2方法2--螺旋扫描法参考1基于角度的遮挡检测方法 在基于角度的方法中,通过依次分析DSM中沿径向方向的投影光线的角度来识别遮挡。定义α\alphaα角:DSM三维点与相机中心…...
【luogu CF1098D】Eels(结论)
Eels 题目链接:luogu CF1098D 题目大意 有一个可重集,每次操作会放进去一个数或者取出一个数。 然后每次操作完之后,问你对这个集合进行操作,每次选出两个数 a,b 加起来合并回去,直到集合中只剩一个数,要…...
【java】遍历文件夹输出所有文件的文件名与绝对路径,在windows环境
【java】遍历文件夹输出所有文件的文件名与绝对路径,在windows环境 String filepath "D:\\CloudMusic\\";//D盘下的file文件夹的目录File file new File(filepath);//File类型可以是文件也可以是文件夹File[] fileList file.listFiles();//将该目录下的…...
Window问题详解(下)
建议先看一下 Window问题详解(上) 思路② 既然会超时,那该怎么办呢? 显然需要一个更快速的方法来解决这个问题! 我们先来观察一下图片: 我们发现,每一次选中的数都会增加下一个。 !!!!! 因此,我们可以根据此特性优化时间!! 第一次先求出前 k − 1 k-1 k−...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
