反向传播算法
反向传播算法的数学解释
反向传播算法是深度学习中用于训练神经网络的核心算法。它通过计算损失函数相对于网络权重的梯度来更新权重,从而最小化损失。
反向传播的基本原理
反向传播算法基于链式法则,它按层反向传递误差,从输出层开始,逐层向后至输入层。
1. 损失函数
- 假设损失函数为 L L L,用于衡量预测输出 y ^ \hat{y} y^ 和实际标签 y y y 之间的差异。
2. 链式法则
-
链式法则用于计算损失函数相对于网络中每个权重的梯度。对于每个权重 W W W:
∂ L ∂ W = ∂ L ∂ y ^ × ∂ y ^ ∂ W \frac{\partial L}{\partial W} = \frac{\partial L}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial W} ∂W∂L=∂y^∂L×∂W∂y^
3. 梯度传播
-
在多层网络中,梯度需要通过每一层反向传播。对于层 l l l 的权重 W l W_l Wl:
∂ L ∂ W l = ∂ L ∂ y ^ × ∂ y ^ ∂ a l × ∂ a l ∂ W l \frac{\partial L}{\partial W_l} = \frac{\partial L}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial a_l} \times \frac{\partial a_l}{\partial W_l} ∂Wl∂L=∂y^∂L×∂al∂y^×∂Wl∂al
其中 a l a_l al 是层 l l l 的激活输出。
4. 权重更新
-
权重通过梯度下降法更新:
W new = W old − η × ∂ L ∂ W W_{\text{new}} = W_{\text{old}} - \eta \times \frac{\partial L}{\partial W} Wnew=Wold−η×∂W∂L
其中 η \eta η 是学习率。
反向传播的步骤
- 前向传播:计算每层的激活输出直至输出层。
- 损失计算:计算预测输出与实际标签的损失。
- 反向传播:从输出层开始,逐层向后计算损失函数相对于每个权重的梯度。
- 更新权重:根据计算得到的梯度更新网络的权重。
反向传播使得深度神经网络能够通过学习数据中的复杂模式来优化其性能,这是现代深度学习应用的基石。
代码
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential# 创建一个简单的神经网络
model = Sequential([Dense(10, activation='relu', input_shape=(784,)),Dense(10, activation='softmax')
])# 编译模型,使用交叉熵损失函数和SGD优化器
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])# 假设有训练数据 X_train, y_train
# X_train = ... # 输入数据
# y_train = ... # 标签数据# 训练模型
# model.fit(X_train, y_train, epochs=10)# 在这个过程中,TensorFlow 自动执行前向传播、损失计算、反向传播和权重更新
在这个示例中,我们定义了一个含有两层的简单神经网络,并使用随机梯度下降(SGD)作为优化器。在训练过程中,TensorFlow 会自动处理前向传播、损失计算、反向传播和权重更新的步骤
相关文章:
反向传播算法
反向传播算法的数学解释 反向传播算法是深度学习中用于训练神经网络的核心算法。它通过计算损失函数相对于网络权重的梯度来更新权重,从而最小化损失。 反向传播的基本原理 反向传播算法基于链式法则,它按层反向传递误差,从输出层开始&…...
记录 | ubuntu降低内核版本的方法
降低 ubuntu 内核,比如降低到 4.15 版本,下载对应 4.15.0.128 内核离线安装,网址: http://archive.ubuntu.com/ubuntu/pool/main/l/linux/, 根据实际选择下载,我这里选择,安装的话采用 dpkg -i …...
MX6ULL学习笔记 (八) platform 设备驱动实验
前言: 什么是 Linux 下的 platform 设备驱动 Linux下的字符设备驱动一般都比较简单,只是对IO进行简单的读写操作。但是I2C、SPI、LCD、USB等外设的驱动就比较复杂了,需要考虑到驱动的可重用性,以避免内核中存在大量重复代码&…...
初识Linux:权限(2)
目录 权限 用户(角色) 文件权限属性 文件的权限属性: 有无权限的区别: 身份匹配: 拥有者、所属组的修改: 八进制的转化: 文件的类型: x可执行权限为什么不能执行…...
测试环境使用问题及其优化对策实践
1 背景及问题 G.J.Myers在<软件测试技巧>中提出:测试是为了寻找错误而运行程序的过程,一个好的测试用例是指很可能找到迄今为止尚未发现的错误的测试, 一个成功的测试是揭示了迄今为止尚未发现的错误的测试。 对于新手来说࿰…...
【力扣】206.反转链表
206.反转链表 这道题有两种解法,但不只有两种,嘿嘿。 法一:迭代法 就是按循序遍历将每一个指针的指向都给改了。比如说1——>2——>3改为null<——1<——2<——3这样。那这里以第二个结点为例,想一想。我想要指向…...
Python:核心知识点整理大全7-笔记
目录 4.2.5 遗漏了冒号 4.3 创建数值列表 4.3.1 使用函数 range() 4.3.2 使用 range()创建数字列表 结果如下: 4.3.3 对数字列表执行简单的统计计算 4.3.4 列表解析 4.4 使用列表的一部分 4.4.1 切片 4.4.2 遍历切片 4.4.3 复制列表 4.2.5 遗漏了冒号 fo…...
Hadoop学习笔记(HDP)-Part.15 安装HIVE
目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …...
【力扣100】4.移动零
题目链接 我的题解: class Solution:def moveZeroes(self, nums: List[int]) -> None:"""Do not return anything, modify nums in-place instead."""# 思路是先计算共有几个0,然后remove几次,再末位加几个…...
Filebeat使用指南
Filebeat介绍主要优势主要功能配置日志的解析Kibana中设置日志解析安装步骤安装Filebeat安装监控通过prometheus监控 Filebeat和Logstash的主要区别 Filebeat介绍 Filebeat是使用Golang实现的轻量型日志采集器,也是Elasticsearch stack的一员。它可以作为一个agent…...
【Vue2】Vue的介绍与Vue的第一个实例
文章目录 前言一、为什么要学习Vue二、什么是Vue1.什么是构建用户界面2.什么是渐进式Vue的两种开发方式: 3.什么是框架 三、创建Vue实例四、插值表达式 {{}}1.作用:利用表达式进行插值,渲染到页面中2.语法3.错误用法 五、响应式特性1.什么是响…...
十五届蓝桥杯分享会(一)
注:省赛4月,决赛6月 一、蓝桥杯整体介绍 1.十四届蓝桥杯软件电子赛参赛人数:C 8w,java/python 2w,web 4k,单片机 1.8w,嵌入式/EDA5k,物联网 300 1.1设计类参赛人数:平…...
原生video设置控制面板controls显示哪些控件
之前我们学习了如何使用原生video播放视频 今天来一个进阶版的——设置控制面板controls显示哪些控件 先看一下当我们使用原生video时,controls属性为true时,相关代码如下: 正常的控制面板默认显示的控件有:播放、时间线、音量调…...
openlayers地图使用---跟随地图比例尺动态标绘大小的一种方式2
openlayers地图使用—跟随地图比例尺动态标绘大小的一种方式2 预期:随着地图比例尺放大缩小,地图上的标绘随着变化尺寸 思路:通过不断添加地图图层实现标绘的动态缩放 优点:标绘放大缩小非常流畅 缺点:标绘超过1000…...
C语言期末考试复习PTA数据类型及表达式-分支结构程序-循环结构-数组经典选择题
目录 第一章:C语言数据类型和表达式 第一题: 第二题: 第三题: 第四题: 第五题: 第六题: 第七题: 第八题: 第九题: 第二章:分支结构程序…...
RHEL8_Linux访问NFS存储及自动挂载
本章主要介绍NFS客户端的使用 创建FNS服务器并通过NFS共享一个目录在客户端上访问NFS共享的目录自动挂载的配置和使用 1.访问NFS存储 前面介绍了本地存储,本章就来介绍如何使用网络上的存储设备。NFS即网络文件系统,所实现的是 Linux 和 Linux 之间的共…...
python 使用 AppiumService 类启动appium server
一、前置说明 在Appium的1.6.0版本中引入了AppiumService类,可以很方便的通过该类来管理Appium服务器的启动和停止。 二、操作步骤 import osfrom appium.webdriver.appium_service import AppiumService as OriginalServerfrom libs import pathclass AppiumSer…...
HbuilderX使用Uniapp+Vue3安装uview-plus
如果你是vue2版本想使用uniapp去配置uviewui库可以参考之前的文章 小程序的第三方ui库推荐较多的还是uview的,看起来比较美观,功能也比较完善,下面将提一下Vue3安装uview-plus库的教程 创建项目 安装 首先进入官网 uView-Plus 直接下载并导…...
【Android】Java NIO(New I/O)的`Selector`类来实现非阻塞的Socket监听
如果你不想使用循环来监听客户端的连接和数据,你可以使用Java NIO(New I/O)的Selector类来实现非阻塞的Socket监听。Selector类提供了一种选择一组已经就绪的通道的机制,这样你就不需要使用循环来等待连接和数据。 以下是使用Sel…...
『亚马逊云科技产品测评』在当前飞速发展的AI人工智能时代云服务技术哪家强?
授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 文章目录 引言一、亚马逊&阿里云发展历史介绍1.1 亚马逊发展历史1.2…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
