当前位置: 首页 > news >正文

目标检测——OverFeat算法解读

论文:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
作者:Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun
链接:https://arxiv.org/abs/1312.6229

文章目录

  • 1、算法概述
  • 2、OverFeat细节
    • 2.1 分类
    • 2.2 定位
  • 3、创新点

1、算法概述

OverFeat算法同时实现图像分类、定位及检测任务,也证明了采用一个网络同时做三种任务可以提高分类、定位、检测的准确率。文章介绍了一种通过累积预测边界框来定位和检测的方法。通过结合许多定位预测,可以在没有背景样本训练的情况下进行检测任务,不进行背景训练也可以让网络只关注正面类,以获得更高的准确性。文中报道的结果是基于ILSVRC2013的,分类报道TOP5(分类概率前5个包含groundTruth就算正确);定位也是报道TOP5但是需加上TOP5各自对应目标的bounding box预测且bounding box与groundTruth矩形框标注的iou大于50%才能算bounding box预测正确;检测任务就需要预测图像中的每个目标了(类别加定位,包括背景类)并以mAP的指标报道结果。

2、OverFeat细节

2.1 分类

OverFeat仿照AlexNet设计,但是对网络结构和推理步骤进行了改进;文中分类网络分为两种:速度和精度,结构如下:
在这里插入图片描述
在这里插入图片描述
相对于AlexNet,它没有采用对比度归一化,没有用带重叠的池化层,网络前两层使用了小的stride从而保留了比较大的特征图,因为大的stride虽然能快速减小特征图从而对网络推理提速但是对精度有损害。最终精度模型比速度模型的TOP5错误率少了2.21%(14.18%对16.39%)。

  • 多尺度分类
    AlexNet中,应用了多视角(multi-view)投票技术用来提升最后预测类别的精度,即通过4次corner_crop加一次center_crop,同时应用水平翻转共计10次分类结果来投票出最终的类别;然而这种方式还是忽略了大量图片区域,也在图片重叠区域存在计算冗余,此外,这种方式也只是图片的单一尺度,不一定是卷积神经网络最合适的推理尺度。所以作者采用了6种不同尺度的测试图像作为输入(每个尺度图像还增加了水平翻转),而且作者认为在特征提取最后一层(conv 5)直接做 max pooling,将导致最终输入图像的检测粒度不足,提出用偏移池化(offset pooling)操作实现让分类器的视角窗口在特征图上滑动,最终将偏移池化得到的特征图组合在一起输出结果。如下表、下图所示:
    在这里插入图片描述
    在这里插入图片描述
  • 卷积和高效的滑窗
    在此之前,很多滑动窗口技术都是为每个窗口重复进行所有的计算,这对计算资源的消耗是巨大的。而卷积天然就带有滑窗的方式,如下图所示,因为卷积操作是共享卷积核滑动操作,所以计算非常高效,作者最后在测试阶段,将最后的全连接层替换成了1x1卷积层,这样就能适应比训练图像大的图片测试了。
    在这里插入图片描述

2.2 定位

由分类到定位,基于之前的分类网络,把网络的分类器替换成回归器,训练这个网络预测每个位置和尺度的物体边界框,就可以实现定位任务。回归器也取网络的前5层的feature map输出作为bounding box的输入,该feature map也用作分类器训练,所以分类器和回归器共用前面的特征。回归器的输出是4个值,代表bounding box的坐标,每个类都有对应的bounding box预测。训练回归器时,前5层不参与训练;如果样本和真实标签的重叠小于50%,则样本不参与回归器的训练。(由于样本预处理和增强的原因,可能导致样本的范围和真实标签已经重叠较小)。下面看看定位/检测具体的工作步骤:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、创新点

采用multiscale、sliding window、offset pooling实现多尺度滑窗采样,基于卷积高效实现滑窗思想,在同一网络框架下实现分类、定位、检测。

相关文章:

目标检测——OverFeat算法解读

论文:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 作者:Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun 链接:https://arxiv.org/abs/1312.6229 文章…...

vue获取主机id和IP地址

获取主机id和IP地址 在vue.config.js const os require(“os”); function getNetworkIp() { let needHost “”; // 打开的host try { // 获得网络接口列表 let network os.networkInterfaces(); for (let dev in network) { let iface network[dev]; for (let i 0; i …...

在pytorch中自定义dataset读取数据

这篇是我对哔哩哔哩up主 霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享 有关我们数据读取预训练 以及如何将它打包成一个一个batch输入我们的网络的 首先我们来看一下之前我们在讲resnet网络时所使用的源码 我们去使用了官方实现的image folder去读取我们的图像数据 然…...

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

1.关于稀疏卷积的解释:https://zhuanlan.zhihu.com/p/382365889 2. 答案: 在深度学习领域,尤其是计算机视觉任务中,遮蔽图像建模(Masked Image Modeling, MIM)是一种自监督学习策略,其基本思想…...

Java后端的登录、注册接口是怎么实现的

目录 Java后端的登录、注册接口是怎么实现的 Java后端的登录接口是怎么实现的 Java后端的注册接口怎么实现? 如何防止SQL注入攻击? Java后端的登录、注册接口是怎么实现的 Java后端的登录接口是怎么实现的 Java后端的登录接口的实现方式有很多种&a…...

TCP Keepalive 和 HTTP Keep-Aliv

HTTP的Keep-Alive 在http1.0的版本中,它是基于请求-应答模型和TCP协议的,也就是在建立TCP连接后,客户端发送一次请求并且接收到响应后,就会立马断开TCP连接,称为HTTP短连接,这种方式比较耗费时间以及浪费资…...

操作系统 复习笔记

操作系统的目标和作用 操作系统的目标 1.方便性 2.有效性 3.可扩展性 4.开放性 操作系统的作用 1.OS作为用户与计算机硬件系统之间的接口 2.OS作为计算机系统资源的管理者 3.OS实现了对计算机系统资源的抽象 推动操作系统发展的主要动力 1.不断提高计算机系统资源的…...

Java中实现单例模式的方式

1. 使用静态内部类实现单例模式 在Java中,使用静态内部类实现单例模式是一种常见而又有效的方式。这种方式被称为“静态内部类单例模式”或者“Holder模式”。这种实现方式有以下优点: 懒加载(Lazy Initialization):静…...

Vue3-01-创建项目

环境准备 1.需要用到 16.0 以及更高版本的 node.js 2.使用vscode编辑器进行项目开发可以在命令行中查看node的版本号: node -v创建项目 1.准备一个目录 例如,我创建项目的时候是在该目录下进行的;D:\projectsTest\vue3project2.执行创建命令(*&#x…...

Go 语言中的反射机制

欢迎大家到我的博客浏览&#xff0c;更好的阅读体验请点击 反射 | YinKais Blog 反射在大多数的应用和服务中并不常见&#xff0c;但是很多框架都依赖 Go 语言的反射机制简化代码。<!--more-->因为 Go 语言的语法元素很少、设计简单&#xff0c;所以它没有特别强的表达能…...

[leetcode 前缀和]

525. 连续数组 M :::details 给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组&#xff0c;并返回该子数组的长度。 示例 1: 输入: nums [0,1] 输出: 2 说明: [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。示例 2: 输入: nums [0,1,0] 输出: …...

Python与ArcGIS系列(十五)根据距离抓取字段

目录 0 简述1 实例需求2 arcpy开发脚本0 简述 在处理gis数据的时候,会遇到这种需求:将一个图层与另一个图层中相近的要素进行字段赋值。本篇将介绍如何利用arcpy及arcgis的工具箱实现这个功能。 1 实例需求 为了介绍这个功能的实现,我们需要有一个特定的功能需求。在这里选…...

YOLOv8分割训练及分割半自动标注

YOLOv8是基于目标检测算法YOLOv5的改进版,它在YOLOv5的基础上进行了优化和改进,加入了一些新的特性和技术,如切片注意力机制、骨干网络的选择等。 本文以yolov8-seg为基准,主要整理分割训练流程及使用v8分割模型进行半自动标注的过程。 一、v8-seg训练 1.1 环境配置 github…...

jsp页面通过class或者id获取a标签上的属性的值

要通过class和id两种方式获取a标签上的某个属性的值&#xff0c;或者给其赋值&#xff0c;可以使用JavaScript。以下是两种方法的示例&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name&q…...

题目:美丽的区间(蓝桥OJ 1372)

题目描述&#xff1a; 解题思路&#xff1a; 采用双指针的快慢指针。 图解 可以采用前缀和&#xff0c;但会相较麻烦。 题解&#xff1a; #include<bits/stdc.h> using namespace std;const int N 1e5 9; int a[N];// 因为是连续区间&#xff08;连续区间&#xff1…...

解决:During handling of the above exception, another exception occurred

解决&#xff1a;During handling of the above exception, another exception occurred 文章目录 解决&#xff1a;During handling of the above exception, another exception occurred背景报错问题报错翻译报错位置代码报错原因解决方法参考内容&#xff1a;今天的分享就到…...

计算机基础知识65

cookie和session的使用 # 概念&#xff1a;cookie 是客户端浏览器上的键值对 # 目的&#xff1a;为了做会话保持 # 来源&#xff1a;服务端写入的&#xff0c;服务端再返回的响应头中写入&#xff0c;浏览器会自动取出来 存起来是以key value 形式&#xff0c;有过期时间、path…...

Python开发运维:Python垃圾回收机制

目录 一、理论 1.Python垃圾回收机制 一、理论 1.Python垃圾回收机制 &#xff08;1&#xff09;引⽤计数器 1&#xff09;环状双向链表 refchain 在python程序中创建的任何对象都会放在refchain链表中。 name "david" age 20 hobby ["篮球",游泳…...

ros2/ros安装ros-dep||rosdep init错误

第一个错误的做法&#xff1a; sudo apt-get install python3-pip sudo pip3 install 6-rosdep sudo 6-rosdep 如果使用上述代码将会摧毁整个系统&#xff0c;不重装系统反正我是搞不定啊&#xff0c;因为我不知道那个写软件的人到底做了什么。因为这个我安装的版本是humble&…...

《深入理解计算机系统》学习笔记 - 第四课 - 机器级别的程序

Lecture 05 Machine Level Programming I Basics 机器级别的程序 文章目录 Lecture 05 Machine Level Programming I Basics 机器级别的程序intel 处理器的历史和体系结构芯片的构成AMD 公司(Advanced Micro Devices&#xff0c;先进的微型设备) C, 汇编, 机器代码定义汇编/机器…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...