当前位置: 首页 > news >正文

Child Mind Institute - Detect Sleep States(2023年第一次Kaggle拿到了银牌总结)

感谢

感谢艾兄(大佬带队)、rich师弟(师弟通过这次比赛机械转码成功、耐心学习)、张同学(也很有耐心的在学习),感谢开源方案(开源就是银牌),在此基础上一个月不到收获到了很多,运气很好。这个是我们比赛的总结: 

我们队Kaggle CMI银牌方案,欢迎感兴趣的伙伴upvote:https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/459610


计划 (系统>结果,稳健>取巧)

团队计划表,每个人做的那部分工作,避免重复,方便交流,提高效率,这个工作表起了很大的作用。


具体方案 

75th Place Detailed Solution - Spec2DCNN + CenterNet + Transformer + NMS

First of all, I would like to thank @tubotubo for sharing your high-quality code, and also thank my teammates @liruiqi577 @brickcoder @xtzhou for their contributions in the competition. Here, I am going to share our team’s “snore like thunder” solution from the following aspects:

  1. Data preprocessing
  2. Feature Engineering
  3. Model
  4. Post Processing
  5. Model Ensemble

1. Data preprocessing

We made EDA and readed open discussions found that there are 4 types of data anomalies:

  • Some series have a high missing rate and some of them do not even have any event labels;
  • In some series , there are no event annotations in the middle and tail (possibly because the collection activity has stopped);
  • The sleep record is incomplete (a period of sleep is only marked with onset or wakeup).
  • There are outliers in the enmo value.

To this end, we have some attempts, such as:

  • Eliminate series with high missing rates;
  • Cut the tail of the series without event labels;
  • Upper clip enmo to 1.

But the above methods didn't completely work. In the end, our preprocessing method was:

We split the dataset group by series into 5 folds. For each fold, we eliminate series with a label missing rate of 100% in the training dataset while without performing any data preprocessing on the validation set. This is done to avoid introducing noise to the training set, and to ensure that the evaluation results of the validation set are more biased towards the real data distribution, which improve our LB score + 0.006.

Part of our experiments as below:

ExperimentFold0Public (single fold)Private (5-fold)
No preprocess missing data0.7510.7180.744
Eliminate unlabeled data at the end of train_series & series with missing rate >80%0.7390.7090.741
Drop train series which don’t have any event labels0.7520.7240.749

2. Feature Engineering

  • Sensor features: After smoothing the enmo and anglez features, a first-order difference is made to obtain the absolute value. Then replace the original enmo and anglez features with these features, which improve our LB score + 0.01.
train_series['enmo_abs_diff'] = train_series['enmo'].diff().abs()
train_series['enmo'] = train_series['enmo_abs_diff'].rolling(window=5, center=True, min_periods=1).mean()
train_series['anglez_abs_diff'] = train_series['anglez'].diff().abs()
train_series['anglez'] = train_series['anglez_abs_diff'].rolling(window=5, center=True, min_periods=1).mean()
  • Time features: sin and cos hour.

In addition, we also made the following features based on open notebooks and our EDA, such as: differential features with different orders, rolling window statistical features, interactive features of enmo and anglez (such as anglez's differential abs * enmo, etc.), anglez_rad_sin/cos, dayofweek/is_weekend (I find that children have different sleeping habits on weekdays and weekends). But strangely enough, too much feature engineering didn’t bring us much benefit.

ExperimentFold0Public (5-fold)Private (5-fold)
anglez + enmo + hour_sin + hour_cos0.7630.7310.768
anglez_abs_diff + enmo_abs_diff + hour_sin + hour_cos0.7710.7410.781

3. Model

We used 4 models:

  • CNNSpectrogram + Spec2DCNN + UNet1DDecoder;
  • PANNsFeatureExtractor + Spec2DCNN + UNet1DDecoder.
  • PANNsFeatureExtractor + CenterNet + UNet1DDecoder.
  • TransformerAutoModel (xsmall, downsample_rate=8).

Parameter Tunning: Add more kernel_size 8 for CNNSpectrogram can gain +0.002 online.

Multi-Task Learning Objectives: sleep status, onset, wake.

Loss Function: For Spec2DCNN and TransformerAutoModel, we use BCE, but with multi-task target weighting, sleep:onset:wake = 0.5:1:1. The purpose of this is to allow the model to focus on learning the last two columns. We tried to train only for the onset and wake columns, but the score was not good. The reason is speculated that the positive samples in these two columns are sparse, and MTL needs to be used to transfer the information from positive samples in the sleep status to the prediction of sleep activity events. Also, I tried KL Loss but it didn't work that well.

self.loss_fn = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([0.5,1.,1.]))

At the same time, we adjusted epoch to 70 and added early stopping with patience=15. The early stopping criterion is the AP of the validation dataset, not the loss of the validation set. batch_size=32.

ExperimentFold0Public (single fold)Private (5-fold)
earlystop by val_loss0.7500.6970.742
earlystop by val_score0.7510.7180.744
loss_wgt = 1:1:10.7520.7240.749
loss_wgt = 0.5:1:10.7550.7230.753

Note: we used the model_weight.pth with the best offline val_score to submit our LB instead of using the best_model.pth with the best offline val_loss。

4. Post Processing

Our post-processing mainly includes:

  • find_peaks(): scipy.signal.find_peaks;
  • NMS: This task can be treated as object detection. [onset, wakeup] is regarded as a bounding boxes, and score is the confident of the box. Therefore, I used a time-series NMS. Using NMS can eliminate redundant boxes with high IOU, which increase our AP.
def apply_nms(dets_arr, thresh):x1 = dets_arr[:, 0]x2 = dets_arr[:, 1]scores = dets_arr[:, 2]areas = x2 - x1order = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)xx1 = np.maximum(x1[i], x1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])inter = np.maximum(0.0, xx2 - xx1 + 1)ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= thresh)[0]order = order[inds + 1]dets_nms_arr = dets_arr[keep,:]onset_steps = dets_nms_arr[:, 0].tolist()wakeup_steps = dets_nms_arr[:, 1].tolist()nms_save_steps = np.unique(onset_steps + wakeup_steps).tolist()return nms_save_steps

In addition, we set score_th=0.005 (If it is set too low, a large number of events will be detected and cause online scoring errors, so it is fixed at 0.005 here), and use optuna to simultaneously search the parameter distance in find_peaks and the parameter iou_threshold of NMS. Finally, when distance=72 and iou_threshold=0.995, the best performance is achieved.

import optunadef objective(trial):score_th = 0.005 # trial.suggest_float('score_th', 0.003, 0.006)distance = trial.suggest_int('distance', 20, 80)thresh = trial.suggest_float('thresh', 0.75, 1.)# find peakval_pred_df = post_process_for_seg(keys=keys,preds=preds[:, :, [1, 2]],score_th=score_th,distance=distance,)# nmsval_pred_df = val_pred_df.to_pandas()nms_pred_dfs = NMS_prediction(val_pred_df, thresh, verbose=False)score = event_detection_ap(valid_event_df.to_pandas(), nms_pred_dfs)return -scorestudy = optuna.create_study()
study.optimize(objective, n_trials=100)
print('Best hyperparameters: ', study.best_params)
print('Best score: ', study.best_value)
ExperimentFold0Pubic (5-fold)Private (5-fold)
find_peak-0.7450.787
find_peak+NMS+optuna-0.7460.789

5. Model Ensemble

Finally, we average the output probabilities of the following models and then feed into the post processing methods to detect events. By the way, I tried post-processing the detection events for each model and then concating them, but this resulted in too many detections. Even with NMS, I didn't get a better score.

The number of ensemble models: 4 (types of models) * 5 (fold number) = 20.

ExperimentFold0Pubic (5-fold)Private (5-fold)
model1: CNNSpectrogram + Spec2DCNN + UNet1DDecoder0.772090.7430.784
model2: PANNsFeatureExtractor + Spec2DCNN + UNet1DDecoder0.7770.7430.782
model3: PANNsFeatureExtractor + CenterNet + UNet1DDecoder0.759680.6340.68
model4: TransformerAutoModel0.74680--
model1 + model2(1:1)-0.7460.789
model1 + model2+model3(1:1:0.4)-0.750.786
model1 + model2+model3+model4(1:1:0.4:0.2)0.7520.787

Unfortunately, we only considered CenterNet and Transformer to model ensemble with a tentative attitude on the last day, but surprisingly found that a low-CV-scoring model still has a probability of improving final performance as long as it is heterogeneous compared with your previous models. But we didn’t have more opportunities to submit more, which was a profound lesson for me.

Thoughts not done:

  • Data Augmentation: Shift the time within the batch to increase more time diversity and reduce dependence on hour features.

  • Model: Try more models. Although we try transformer and it didn’t work for us. I am veryyy looking forward to the solutions from top-ranking players.

Thanks again to Kaggle and all Kaggle players. This was a good competition and we learned a lot from it. If you think our solution is useful for you, welcome to upvote and discuss with us.

In addition, this is my first 🥈 silver medal. Thank you everyone for letting me learn a lot. I will continue to work hard. :)

相关文章:

Child Mind Institute - Detect Sleep States(2023年第一次Kaggle拿到了银牌总结)

感谢 感谢艾兄&#xff08;大佬带队&#xff09;、rich师弟&#xff08;师弟通过这次比赛机械转码成功、耐心学习&#xff09;、张同学&#xff08;也很有耐心的在学习&#xff09;&#xff0c;感谢开源方案&#xff08;开源就是银牌&#xff09;&#xff0c;在此基础上一个月…...

Esxi7Esxi8设置VMFSL虚拟闪存的大小

Esxi7Esxi8设置VMFSL虚拟闪存的大小 ESXi7,8 默认安装会分配一个 VMFSL(VMFS-L)(Local VMFS)很大空间(120G), 感觉很浪费, 实际给 8G 就可以了, 最少 6G , 经实验,给2G没法安装 . Esxi7是虚拟闪存的 修改的方法是: 在安装时修改 设置 autoPartitionOSDataSize8192 在cdromBoo…...

vue2+electron桌面端一体机应用

vue2+electron项目 前言:公司有一个项目需要用Vue转成exe,首先我使用vue-cli脚手架搭建vue2项目,然后安装electron 安装electron 这一步骤可以省略,安装electron-builder时会自动安装electron npm i electron 安装electron-builder vue add electron-builder 项目中多出…...

目标检测——OverFeat算法解读

论文&#xff1a;OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 作者&#xff1a;Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun 链接&#xff1a;https://arxiv.org/abs/1312.6229 文章…...

vue获取主机id和IP地址

获取主机id和IP地址 在vue.config.js const os require(“os”); function getNetworkIp() { let needHost “”; // 打开的host try { // 获得网络接口列表 let network os.networkInterfaces(); for (let dev in network) { let iface network[dev]; for (let i 0; i …...

在pytorch中自定义dataset读取数据

这篇是我对哔哩哔哩up主 霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享 有关我们数据读取预训练 以及如何将它打包成一个一个batch输入我们的网络的 首先我们来看一下之前我们在讲resnet网络时所使用的源码 我们去使用了官方实现的image folder去读取我们的图像数据 然…...

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

1.关于稀疏卷积的解释&#xff1a;https://zhuanlan.zhihu.com/p/382365889 2. 答案&#xff1a; 在深度学习领域&#xff0c;尤其是计算机视觉任务中&#xff0c;遮蔽图像建模&#xff08;Masked Image Modeling, MIM&#xff09;是一种自监督学习策略&#xff0c;其基本思想…...

Java后端的登录、注册接口是怎么实现的

目录 Java后端的登录、注册接口是怎么实现的 Java后端的登录接口是怎么实现的 Java后端的注册接口怎么实现&#xff1f; 如何防止SQL注入攻击&#xff1f; Java后端的登录、注册接口是怎么实现的 Java后端的登录接口是怎么实现的 Java后端的登录接口的实现方式有很多种&a…...

TCP Keepalive 和 HTTP Keep-Aliv

HTTP的Keep-Alive 在http1.0的版本中&#xff0c;它是基于请求-应答模型和TCP协议的&#xff0c;也就是在建立TCP连接后&#xff0c;客户端发送一次请求并且接收到响应后&#xff0c;就会立马断开TCP连接&#xff0c;称为HTTP短连接&#xff0c;这种方式比较耗费时间以及浪费资…...

操作系统 复习笔记

操作系统的目标和作用 操作系统的目标 1.方便性 2.有效性 3.可扩展性 4.开放性 操作系统的作用 1.OS作为用户与计算机硬件系统之间的接口 2.OS作为计算机系统资源的管理者 3.OS实现了对计算机系统资源的抽象 推动操作系统发展的主要动力 1.不断提高计算机系统资源的…...

Java中实现单例模式的方式

1. 使用静态内部类实现单例模式 在Java中&#xff0c;使用静态内部类实现单例模式是一种常见而又有效的方式。这种方式被称为“静态内部类单例模式”或者“Holder模式”。这种实现方式有以下优点&#xff1a; 懒加载&#xff08;Lazy Initialization&#xff09;&#xff1a;静…...

Vue3-01-创建项目

环境准备 1.需要用到 16.0 以及更高版本的 node.js 2.使用vscode编辑器进行项目开发可以在命令行中查看node的版本号: node -v创建项目 1.准备一个目录 例如&#xff0c;我创建项目的时候是在该目录下进行的;D:\projectsTest\vue3project2.执行创建命令&#xff08;*&#x…...

Go 语言中的反射机制

欢迎大家到我的博客浏览&#xff0c;更好的阅读体验请点击 反射 | YinKais Blog 反射在大多数的应用和服务中并不常见&#xff0c;但是很多框架都依赖 Go 语言的反射机制简化代码。<!--more-->因为 Go 语言的语法元素很少、设计简单&#xff0c;所以它没有特别强的表达能…...

[leetcode 前缀和]

525. 连续数组 M :::details 给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组&#xff0c;并返回该子数组的长度。 示例 1: 输入: nums [0,1] 输出: 2 说明: [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。示例 2: 输入: nums [0,1,0] 输出: …...

Python与ArcGIS系列(十五)根据距离抓取字段

目录 0 简述1 实例需求2 arcpy开发脚本0 简述 在处理gis数据的时候,会遇到这种需求:将一个图层与另一个图层中相近的要素进行字段赋值。本篇将介绍如何利用arcpy及arcgis的工具箱实现这个功能。 1 实例需求 为了介绍这个功能的实现,我们需要有一个特定的功能需求。在这里选…...

YOLOv8分割训练及分割半自动标注

YOLOv8是基于目标检测算法YOLOv5的改进版,它在YOLOv5的基础上进行了优化和改进,加入了一些新的特性和技术,如切片注意力机制、骨干网络的选择等。 本文以yolov8-seg为基准,主要整理分割训练流程及使用v8分割模型进行半自动标注的过程。 一、v8-seg训练 1.1 环境配置 github…...

jsp页面通过class或者id获取a标签上的属性的值

要通过class和id两种方式获取a标签上的某个属性的值&#xff0c;或者给其赋值&#xff0c;可以使用JavaScript。以下是两种方法的示例&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name&q…...

题目:美丽的区间(蓝桥OJ 1372)

题目描述&#xff1a; 解题思路&#xff1a; 采用双指针的快慢指针。 图解 可以采用前缀和&#xff0c;但会相较麻烦。 题解&#xff1a; #include<bits/stdc.h> using namespace std;const int N 1e5 9; int a[N];// 因为是连续区间&#xff08;连续区间&#xff1…...

解决:During handling of the above exception, another exception occurred

解决&#xff1a;During handling of the above exception, another exception occurred 文章目录 解决&#xff1a;During handling of the above exception, another exception occurred背景报错问题报错翻译报错位置代码报错原因解决方法参考内容&#xff1a;今天的分享就到…...

计算机基础知识65

cookie和session的使用 # 概念&#xff1a;cookie 是客户端浏览器上的键值对 # 目的&#xff1a;为了做会话保持 # 来源&#xff1a;服务端写入的&#xff0c;服务端再返回的响应头中写入&#xff0c;浏览器会自动取出来 存起来是以key value 形式&#xff0c;有过期时间、path…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...