当前位置: 首页 > news >正文

OpenCV图像相似性比对算法

背景

        在做图像处理或者计算机视觉相关的项目的时候,很多时候需要我们对当前获得的图像和上一次的图像做相似性比对,从而找出当前图像针对上一次的图像的差异性和变化点,这需要用到OpenCV中的一些图像相似性和差异性的比对算法,在OpenCV-Python库中,有几种可以用来比较两幅图片差异的算法,以下是其中一些常用的算法:结构相似性指数,均方误差,峰值信噪比,结构相似性指数加权直方图

环境

win10  64位企业版系统

python版本:3.6.8 (x64)

opencv版本:3.4.2.16

IDE:pycharm2017(Ananconda  3.5.2)

特别说明:不同的OpenCV-Python库的版本,每种算法的名称会有一定的差别。

算法

结构相似性指数(Structural Similarity Index, SSIM)

        SSIM算法通过比较两幅图片的亮度对比度结构信息来评估它们的相似性。在OpenCV中,可以使用cv2.SIFT_create()函数来计算两幅图片的SSIM指数。

代码示例:

import cv2
import numpy as npdef ssim(img1, img2):# 将图像转换为灰度图像gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)# 计算图像的均值和方差mean1, mean2 = np.mean(gray_img1), np.mean(gray_img2)var1, var2 = np.var(gray_img1), np.var(gray_img2)# 计算协方差和SSIM指数cov = np.cov(gray_img1.flatten(), gray_img2.flatten())[0, 1]c1 = (0.01 * 255) ** 2c2 = (0.03 * 255) ** 2ssim = (2 * mean1 * mean2 + c1) * (2 * cov + c2) / ((mean1 ** 2 + mean2 ** 2 + c1) * (var1 + var2 + c2))return ssim# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')# 计算两幅图像的SSIM指数
ssim_index = ssim(image1, image2)# 打印SSIM指数
print("SSIM Index:", ssim_index)

输入两幅“0.jpg”和“1.jpg”的图像,运行即可以得到比对的结果:

在高版本的OpenCV中,自带了创建SSIM对象的函数,可以直接调用: 

import cv2# 读取两幅图像
image1 = cv2.imread('image1.png')
image2 = cv2.imread('image2.png')# 将图像转换为灰度图像
gray_image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
gray_image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)# 创建SSIM对象
ssim = cv2.SIFT_create()# 计算两幅图像的SSIM指数
ssim_index = ssim.compare(gray_image1, gray_image2)# 打印SSIM指数
print("SSIM Index:", ssim_index)

在上述代码中,首先使用cv2.imread()函数读取两幅图像。然后,使用cv2.cvtColor()函数将图像转换为灰度图像,因为SSIM算法只适用于灰度图像。接下来,创建SSIM对象,并使用其compare()方法计算两幅图像的SSIM指数。最后,打印SSIM指数。

请注意,cv2.SIFT_create()函数在该示例中用于创建SSIM对象,但它实际上是用于创建尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)对象的函数。在OpenCV-Python库中,SIFT对象也可以用于计算SSIM指数。

均方误差(Mean Squared Error, MSE)

        MSE算法计算两幅图片每个像素之间的差异,并计算它们的平均值。MSE值越小,表示两幅图片越相似。在OpenCV中,可以使用cv2.absdiff()cv2.mean()函数来计算两幅图片的MSE值。

import cv2
import numpy as npdef mse(img1, img2):# 计算两个图像的差异diff = cv2.absdiff(img1, img2)diff_squared = diff ** 2# 计算均方误差mse = np.mean(diff_squared)return mse# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')# 调整图像的大小,使其具有相同的尺寸
image1 = cv2.resize(image1, (image2.shape[1], image2.shape[0]))# 计算两幅图像的均方误差
mse_value = mse(image1, image2)# 打印均方误差
print("MSE:", mse_value)

 

        在上述代码中,mse()函数计算了两幅图像的均方误差。首先,使用cv2.absdiff()函数计算两个图像之间的差异,并将差异值的平方存储在diff_squared中。然后,使用np.mean()函数计算差异平方的平均值,得到均方误差。最后,返回均方误差值。

请注意,在比较两个图像之前,我们还调整了它们的大小,以确保它们具有相同的尺寸。这是因为均方误差是基于像素级别的比较,需要确保两幅图像具有相同的大小。

峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)

        PSNR算法通过计算两幅图片的MSE值,并将其转换为对数尺度,来评估它们的相似性。PSNR值越大,表示两幅图片越相似。在OpenCV中,可以使用cv2.PSNR()函数来计算两幅图片的PSNR值。

import cv2
import numpy as npdef psnr(img1, img2):# 计算两个图像的均方误差mse = np.mean((img1 - img2) ** 2)# 计算峰值信噪比psnr = 10 * np.log10((255 ** 2) / mse)return psnr# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')# 调整图像的大小,使其具有相同的尺寸
image1 = cv2.resize(image1, (image2.shape[1], image2.shape[0]))# 将图像转换为浮点数类型
image1 = image1.astype(np.float64)
image2 = image2.astype(np.float64)# 计算两幅图像的峰值信噪比
psnr_value = psnr(image1, image2)# 打印峰值信噪比
print("PSNR:", psnr_value)

        在上述代码中,psnr()函数计算了两幅图像的峰值信噪比。首先,计算两个图像之间的均方误差(MSE),即差异的平方的平均值。然后,使用np.log10()函数计算峰值信噪比,其中255是像素值的最大值。最后,返回峰值信噪比值。请注意,为了计算峰值信噪比,我们将图像的数据类型转换为浮点数类型,以避免溢出。这是因为峰值信噪比是基于像素级别的比较,需要进行数值计算。

结构相似性指数加权直方图(Structural Similarity Index Weighted Histogram, SSIM-WH)

        SSIM-WH算法通过将SSIM指数和直方图相似性组合起来,来评估两幅图片的相似性。在OpenCV中,可以使用cv2.compareHist()函数来计算两幅图片的直方图相似性。

import cv2def compare_hist(img1, img2):# 将图像转换为HSV颜色空间img1_hsv = cv2.cvtColor(img1, cv2.COLOR_BGR2HSV)img2_hsv = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)# 计算图像的直方图hist1 = cv2.calcHist([img1_hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])hist2 = cv2.calcHist([img2_hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])# 归一化直方图cv2.normalize(hist1, hist1, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)cv2.normalize(hist2, hist2, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)# 计算直方图相似性similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)return similarity# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')# 调整图像的大小,使其具有相同的尺寸
image1 = cv2.resize(image1, (image2.shape[1], image2.shape[0]))# 计算两幅图像的相似性
similarity = compare_hist(image1, image2)# 打印相似性度量值
print("Similarity:", similarity)

        在上述代码中,compare_hist()函数比较了两幅图像的相似性。首先,将图像转换为HSV颜色空间。然后,使用cv2.calcHist()函数计算图像的直方图。这里使用了2D直方图,其中通道0和1表示H(色调)和S(饱和度)通道。接下来,使用cv2.normalize()函数对直方图进行归一化处理,以便进行比较。最后,使用cv2.compareHist()函数计算直方图之间的相似性度量。cv2.HISTCMP_CORREL参数表示使用相关性作为相似性度量。返回的相似性度量值越接近1,表示两幅图像越相似。请注意,这只是一种比较图像相似性的方法之一。根据具体的需求,可能需要使用其他方法来比较图像的相似性

 

相关文章:

OpenCV图像相似性比对算法

背景 在做图像处理或者计算机视觉相关的项目的时候,很多时候需要我们对当前获得的图像和上一次的图像做相似性比对,从而找出当前图像针对上一次的图像的差异性和变化点,这需要用到OpenCV中的一些图像相似性和差异性的比对算法,在O…...

RedHat8.1安装mysql5.6(GLIBC方式)

安装包下载链接下载链接 https://dev.mysql.com/downloads/file/?id492142 [rootlocalhost ~]# ls //查看压缩包 anaconda-ks.cfg Desktop Documents Downloads initial-setup-ks.cfg Music mysql-5.6.47-linux-glibc2.12-x86_64.tar.gz Pictures Public Templates…...

数据结构之插入排序

目录 前言 插入排序 直接插入排序 插入排序的时间复杂度 希尔排序 前言 在日常生活中,我们不经意间会遇到很多排序的场景,比如在某宝,某东上买东西,我们可以自己自定义价格是由高到低还是由低到高,再比如在王者某…...

2023年江西省“振兴杯”网络信息行业(信息安全测试员)职业技能竞赛 Write UP

文章目录 一、2023csy-web1二、2023csy-web2三、2023csy-web3四、2023csy-web4五、2023csy-misc1六、2023csy-misc2七、2023csy-crypto1八、2023csy-re1 一、2023csy-web1 该题提供一个web靶场,《伟大的挑战者》,分值:5分 web页面一直在播放c…...

【5G PHY】5G NR 如何计算资源块的数量?

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…...

解决oracle.sql.TIMESTAMP序列化转换失败问题 及 J2EE13Compliant原理

目录 报错现象报错内容处理方法Oracle驱动源码总结 报错现象 oracle表中存在TIMESTAMP类型的列时,jdbc查出来做序列化时报错 报错内容 org.springframework.web.util.NestedServletException: Request processing failed; nested exception is org.springframewo…...

QQ2023备份

需要修改的路径(共3处) 这三处路径中,只有一处是需要修改的 QQPC端-主菜单-设置-基本设置-文件管理 点击上面的“”自定义“”,然后修改路径即可 修改路径后提示 然后等一会才会关干净QQ的相关进程,关闭后才会有自动…...

HNU计算机结构体系-实验2:CPU动态指令调度Tomasulo

文章目录 实验2 CPU动态指令调度Tomasulo一、实验目的二、实验说明三、实验内容问题1:问题2:问题3:问题4:问题5: 四、思考题问题1:问题2: 五、实验总结 实验2 CPU动态指令调度Tomasulo 一、实验…...

智慧城市是什么?为什么要建智慧城市?

智慧城市是一个通过现代科技手段推动城市管理和服务创新的概念。 具体来说,它利用信息技术和创新概念,将城市的各个系统和服务集成起来,以提升城市运行效率、优化城市管理和服务,改善市民的生活质量。 为什么要建智慧城市呢&…...

数据结构线性表-栈和队列的实现

1. 栈(Stack) 1.1 概念 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈 顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。 …...

IntelliJ IDEA 的 HTTP 客户端的高级用法

本心、输入输出、结果 文章目录 IntelliJ IDEA 的 HTTP 客户端的高级用法前言HTTP 请求对 gRPC 请求的支持对 GraphQL 和 WebSocket 请求的支持环境文件OpenAPI 补全用于持续集成的 HTTP 客户端 CLI花有重开日,人无再少年实践是检验真理的唯一标准IntelliJ IDEA 的 HTTP 客户端…...

代码随想录算法训练营第四十六天 _ 动态规划_198.打家劫舍、213.打家劫舍II、337.打家劫舍 III。

学习目标: 动态规划五部曲: ① 确定dp[i]的含义 ② 求递推公式 ③ dp数组如何初始化 ④ 确定遍历顺序 ⑤ 打印递归数组 ---- 调试 引用自代码随想录! 60天训练营打卡计划! 学习内容: 198.打家劫舍 动态规划五步曲&a…...

ffmpeg编译问题

利用ffmpeg实现一个播放器,ffmpeg提供动态库,但是编译链接的时候遇到下面的问题: ../ffmpegWidgetPlayer/videoplayerwidget.cpp:23: error: undefined reference to sws_freeContext(SwsContext*) ../ffmpegWidgetPlayer/videoplayerwidget.…...

【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等

Flink 系列文章 一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的…...

centos7做gitlab数据灾备项目地址指向问题

如果你在 CentOS 7 上使用 GitLab 时,它回复的数据指向了另一个服务器的地址,可能是因为配置文件中的一些设置不正确。 要解决这个问题,可以尝试以下几个步骤: 检查 GitLab 配置文件:打开 GitLab 的配置文件&#xf…...

leetcode:93. 复原 IP 地址

复原 IP 地址 中等 1.4K 相关企业 有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 ‘.’ 分隔。 例如:“0.1.2.201” 和 “192.168.1.1” 是 有效 IP 地址,但…...

玄子Share-CSS3 弹性布局知识手册

玄子Share-CSS3 弹性布局知识手册 Flexbox Layout(弹性盒布局)是一种在 CSS 中用于设计复杂布局结构的模型。它提供了更加高效、简便的方式来对容器内的子元素进行排列、对齐和分布 主轴和交叉轴 使用弹性布局,最重要的一个概念就是主轴与…...

Nat easy IP ACL

0表示匹配,1表示任意(主机位0.0.0.255(255主机位)) rule deny source 192.168.2.1 0 设置拒绝192.168.2.1的主机通过 记住将其应用到接口上 [AR2]acl 2000 //创建基本ACL [AR2-acl-basic-2000]rule deny source 192…...

Numpy数组的数据类型汇总 (第4讲)

Numpy数组的数据类型 (第4讲)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ�…...

通讯app:

为了开发一个即时通讯的app,包含发送文字、语音、视频以及视频通话的功能,我们需要考虑以下的技术栈和实现步骤: 技术栈建议: 前端:React Native 或 Flutter 用于跨平台移动应用开发。后端:ThinkPHP Wor…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理&#xff1a…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

反射获取方法和属性

Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...