当前位置: 首页 > news >正文

pytorch学习6-非线性变换(ReLU和sigmoid)

系列文章目录

  1. pytorch学习1-数据加载以及Tensorboard可视化工具
  2. pytorch学习2-Transforms主要方法使用
  3. pytorch学习3-torchvisin和Dataloader的使用
  4. pytorch学习4-简易卷积实现
  5. pytorch学习5-最大池化层的使用
  6. pytorch学习6-非线性变换(ReLU和sigmoid)
  7. pytorch学习7-序列模型搭建
  8. pytorch学习8-损失函数与反向传播
  9. pytorch学习9-优化器学习
  10. pytorch学习10-网络模型的保存和加载
  11. pytorch学习11-完整的模型训练过程

文章目录

  • 系列文章目录
  • 一、非线性变换(ReLU和sigmoid)
  • 总结


一、非线性变换(ReLU和sigmoid)

import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterinput=torch.tensor([[1,-0.5],[-1,3]
])
output=torch.reshape(input,(-1,1,2,2))
print(output.shape)dataset=torchvision.datasets.CIFAR10("./data6",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Mynn(nn.Module):def __init__(self):super(Mynn,self).__init__()self.relu1=ReLU()#使用ReLU激活函数,inplace参数代表是不是覆盖原始数据,默认为Falseself.sigmoid=Sigmoid()##使用sigmoid激活函数# def forward(self,input):#     output=self.relu1(input)#     return outputdef forward(self,input):output=self.sigmoid(input)return output
mynn=Mynn()
writer=SummaryWriter("logs6")
step=0
for data in dataloader:#dataloader的每一批次,既包含图像又包含标签,所以要他们分出来单独处理imgs,taiget=datawriter.add_images("我是输入",imgs,step)output=mynn(imgs)writer.add_images("我是输出",output,step)step+=1
writer.close()

总结

以上就是今天要讲的内容,非线性变换(ReLU和sigmoid)

相关文章:

pytorch学习6-非线性变换(ReLU和sigmoid)

系列文章目录 pytorch学习1-数据加载以及Tensorboard可视化工具pytorch学习2-Transforms主要方法使用pytorch学习3-torchvisin和Dataloader的使用pytorch学习4-简易卷积实现pytorch学习5-最大池化层的使用pytorch学习6-非线性变换(ReLU和sigmoid)pytorc…...

详解Keras3.0 Models API: Whole model saving loading

1、save方法 Model.save(filepath, overwriteTrue, **kwargs) 将模型另存为.keras文件 参数说明 filepath: 保存模型的路径。必须以.keras结尾overwrite:布尔值,表示是否覆盖已存在的文件。默认为 True,即覆盖已存在的文件。save_format…...

Spring Cloud Gateway 网关的基础使用

1. 什么是网关?网关有什么用? 在微服务架构中,网关就是一个提供统一访问地址的组件,它解决了内部微服务与外部的交互问题。网关主要负责流量的路由和转发,将外部请求引到对应的微服务实例上。同时提供身份认证、授权、…...

小米手机锁屏时间设置为永不休眠_手机不息屏_保持亮屏

环境:打开手机自带的锁屏时间设置发现没有 永不息屏的选项 原因:采用了三星OLED屏幕,所以根据OLED屏幕特性,这个是为了防止烧屏而特意设计的。非OLED机型支持设置“永不” 解决方案1:原生系统是支持永不锁屏的&#…...

lightdb plorasql集合类型新增可变数组

文章目录 背景集合类型可变数组可变数组示例 背景 在信创适配中,从Oracle迁移过来的存储过程使用到可变数组。因此在LightDB-X 23.4版本中对现有的集合类型进行了增强,添加了可变数组类型。 集合类型 在LightDB-X 23.4版本开始plorasql支持的集合类型…...

算法--最短路

这里写目录标题 xmind单源最短路简介所有边权都是正朴素的Dijkstra算法思想例子题解 堆优化版的Dijkstra算法 存在负数权Bellman-Ford算法思想例子题解 spfa算法思想例子题解 spfa判断负环思想例子题解 多源汇最短路简介弗洛伊德算法思想例子题解 小tips xmind 上述中&#xff…...

Linux 定时任务备份MySQL数据库

Linux 定时任务基本知识 crontab yum install crontabs (安装 crontabs) systemctl enable crond (设为开机启动) systemctl start crond(启动crond服务) systemctl status crond (查看状态&a…...

查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息

文章目录 摘要1. 查询CPU使用率命令:top -bn1 | grep \"Cpu(s)\" | awk {split($0,arr,\" \");print 100-arr[8]}2. 查询内存命令(单位:G):top -bn1 | grep \"KiB Mem\" | awk {split($…...

外观模式 rust和java的实现

文章目录 外观模式介绍实现javarustrust仓库 外观模式 外观模式(Facade Pattern)隐藏系统的复杂性,它为子系统中的一组接口提供一个统一的高层接口,使得这些接口更加容易使用。外观模式通过封装子系统内部的复杂性,提…...

uniapp-hubildx配置

1.配置浏览器 (1)运行》运行到浏览器配置》配置web服务器 (2)选择浏览器安装路径 (3)浏览器安装路径: (3.1) 右键点击图标》属性 (3.2)选择目标&…...

Nginx基础篇:Nginx搭建、Nginx反向代理、文件服务器部署配置。

Nginx Linux系统安装以及反向代理的配置 简介优点nginx 环境安装常用Nginx 命令nginx 文件服务器搭建 简介 Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务。Nginx是由伊戈尔赛索耶夫为俄罗斯访问量第二的Rambler.ru站点…...

什么是TDR(威胁检测与响应)

网络安全是被动和主动方法的混合体。过去,企业往往局限于被动的方法,随着合规性和安全策略越来越受到重视,主动方法也越来越受到关注。与其他行业相比,网络安全是高度动态的,网络安全团队采用任何可以帮助他们优化的新…...

30、pytest入门内容回顾

整体结构 解读与实操 pytest30讲主要从四个方面由浅入深的进行解读, 开始 讲解了pytest的概述,安装前的准备工作(python,pycharm,pytest),运行方式(命令行),断言(assert…...

2023年 - 我的程序员之旅和成长故事

2023年 - 我的程序员之旅和成长故事 🔥 1.前言 大家好,我是Leo哥🫣🫣🫣,今天咱们不聊技术,聊聊我自己,聊聊我从2023年年初到现在的一些经历和故事,我也很愿意我的故事分…...

JMH性能测试

一、JMH JMH,全称Java Microbenchmark Harness(微基准测试框架),是专门用于Java代码微基准测试的一套测试工具API,是由Java虚拟机团队开发的,一般用于代码的性能调优。 BenchMark又叫做基准测试&#xff0c…...

超完整的mysql安装配置方法(包含idea和navicat连接mysql,并实现建表)

mysql安装配置方法 1、下载mysql2、解压到指定的安装目录3、配置初始化文件my.ini4、配置用户变量和系统变量5、初始化mysql6、安装mysql服务并启动修改密码7、使用idea连接mysql8、使用Navicat可视化工具连接mysql,并实现新建数据库,新建表 1、下载mysq…...

通过仿真理解完整的阵列信号噪声模型

概要 噪声对无线电设备的信号接收会造成影响,是通信、雷达、导航、遥感等工程应用领域中的关键考虑因素。通常认为阵列合成能够提升信噪比,但忽略了这一论断的前提,即不同通道引入的噪声互不相关。但实际应用中,接收的噪声不仅仅包含信道引入的不相关噪声,还包含从外界环…...

问题:数组对象去重

问题:数组对象去重 var arr [{name: ‘a’,id: 1}, {name: ‘a’,id: 2}, {name: ‘b’,id: 3}, {name: ‘c’,id: 4}, {name: ‘c’,id: 6}, {name: ‘b’,id: 6}, {name: ‘d’,id: 7}]; 对数组对象name进行去重处理, 结果显示为: [{name…...

前端:让一个div悬浮在另一个div之上

使用 CSS 的 position 属性和 z-index 属性 首先,将第二个 div 元素的 position 属性设为 relative 或 absolute。这样可以让该元素成为一个定位元素,使得后代元素可以相对于它进行定位。 然后,将要悬浮的 div 元素的 position 属性设为 ab…...

千锋 Vue 详细笔记整理

视频笔记是根据B站 千锋 涛哥 - SpringBootvue前后端分离项目《锋迷商城》实战课-完结版 进行整理的 笔记可上 gitee仓库 自取 千锋 Vue 笔记整理 一、vue 的简介1.1 使用 JQuery 的复杂性问题1.2 VUE 简介1.2.1 前端框架1.2.2 MVVM 二、 vue 入门使用2.1 vue 的引入2.2 入门案…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...