DIP——边缘提取与分割
1.使用canny算法进行边缘提取
本实验比较简单,基本思路是对原图像进行一个高斯模糊处理,用于去噪,之后转换为灰度图,直接调用cv库中的canny记性边缘提取。若想直接得到彩色边缘,则通过按位与操作,将原始彩色图像和Canny边缘图像结合,得到彩色边缘图。具体完整代码如下:
# canny边缘提取实验
import cv2 as cv
import numpy as npdef edge_demo(image):# 对输入的图像进行高斯模糊,去噪,其中高斯核模板大小为3*3,标准差为0blurred = cv.GaussianBlur(image, (3, 3), 0)# 转换为灰度图gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)# 使用Canny边缘检测算法,设置低阈值为50,高阈值为150,提取图像的边缘。经验设定edge_output = cv.Canny(gray, 50, 150)# 在窗口中显示Canny边缘提取的结果图像。cv.imshow('Canny Edge', edge_output)# 彩色边缘提取# 通过按位与操作,将原始彩色图像和Canny边缘图像结合,得到彩色边缘图。dst = cv.bitwise_and(image, image, mask=edge_output)cv.imshow('Color Edge', dst)# 绘图
src = cv.imread('ai.jpg')
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
cv.imshow('input image', src)
edge_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
实验结果
原始图像:

灰度处理后canny算法提取的边缘图像

彩色边缘图像

2.使用大津法进行图像分割
本实验的原理也比较简单,使用大津法进行图像分割。大津法(Otsu’s Method)是一种自适应阈值选取的方法,通常用于图像分割。其目标是通过最大化类间方差(类间方差是指分割后的两个类别之间的方差)来找到一个合适的阈值,将图像分为两个类别,一类为前景,一类为背景。这里我们绘制灰度直方图,并且使用OpenCV的threshold函数进行OTSU阈值化。并且将计算得到的阈值存储在 ret1 中,OTSU阈值化后的图像存储在 th1 中。其完整代码如下:
import cv2
import numpy as np
from matplotlib import pyplot as pltimage = cv2.imread("flying_horse.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)plt.figure(figsize=(6, 6))
plt.imshow(image, cmap="gray")
plt.title("Source Image")
plt.xticks([]), plt.yticks([])
plt.show()# 显示直方图
plt.figure(figsize=(6, 6))
# np.histogram 用于计算直方图的频率和边界。
hist, bins = np.histogram(image.ravel(), 256, [0, 256])
plt.plot(hist, color='black')
plt.title("Histogram")
plt.xlabel("Pixel Value")
plt.ylabel("Frequency")
plt.show()# 使用OpenCV的threshold函数进行OTSU阈值化。
# 将计算得到的阈值存储在 ret1 中,OTSU阈值化后的图像存储在 th1 中。
ret1, th1 = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)# 显示OTSU阈值化后的图像
plt.figure(figsize=(6, 6))
plt.imshow(th1, cmap="gray")
plt.title("OTSU, Threshold: {}".format(ret1))
plt.xticks([]), plt.yticks([])
plt.show()
实验结果:



相关文章:
DIP——边缘提取与分割
1.使用canny算法进行边缘提取 本实验比较简单,基本思路是对原图像进行一个高斯模糊处理,用于去噪,之后转换为灰度图,直接调用cv库中的canny记性边缘提取。若想直接得到彩色边缘,则通过按位与操作,将原始彩色…...
低代码开发:现实挑战与发展前景
低代码开发是近年来迅速崛起的软件开发方法,让编写应用程序变得更快、更简单。有人说它是美味的膳食,让开发过程高效而满足,但也有人质疑它是垃圾食品,缺乏定制性与深度。 一、什么是低代码 低代码开发是一种基于图形用户界面&…...
大数据技术7:基于StarRocks统一OALP实时数仓
前言: 大家对StarRocks 的了解可能不及 ClickHouse或者是远不及 ClickHouse 。但是大家可能听说过 Doris ,而 StarRocks 实际上原名叫做 Doris DB ,他相当于是一个加强版的也就是一个 Doris ,也就是说 Doris 所有的功能 StarRocks 都是有的&a…...
C# WPF上位机开发(网络程序界面开发)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 之前我们讨论过,设备之间通讯的方式很多。但是,不知道大家有没有注意,前面谈到的这些通讯方式都需要上位机电脑…...
卡码网语言基础课 | 20. 排队取奶茶
目录 一、 队列的基本认识 二、 队列的操作 2.1 引入头文件 2.2 创建队列 2.3 队列的常见操作 三、 解题 通过本次练习,将会学习到以下C知识点: 队列的基本概念(队头、队尾)和特点(先入先出)入队、出队…...
Angular 进阶之四:SSR 应用场景与局限
应用场景 内容丰富,复杂交互的动态网页,对首屏加载有要求的项目,对 seo 有要求的项目(因为服务端第一次渲染的时候,已经把关键字和标题渲染到响应的 html 中了,爬虫能够抓取到此静态内容,因此更…...
vue2 cron表达式组件
vue2 cron表达式组件 1. 先上图 2. 代码目录 3. 直接上代码 (组件代码太多,直接上压缩包,解压后直接用,压缩包再博客顶部) 4. 使用注:示例代码中使用了element-ui // HomeView.vue<template><…...
git-vscode
git-vscode ctrlshiftp 创建分支 create branch 直接切到新的分支了 切换分支 直接点左下角自己选择 vscode中配置仓库 https://blog.csdn.net/zora_55/article/details/129709251 推送tag tag作用就是在 Git 中,标记存储库历史记录中特定提交的一种方式。t…...
【C++11(三)】智能指针详解--RAII思想循环引用问题
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:C从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学习C 🔝🔝 C11 1. 前言2. 为什么要有智能指针?3. RAII思想…...
佳明(Garmin) fēnix 7X 增加小睡检测功能
文章目录 (一)零星小睡(二)小睡检测(三)吐槽佳明(3.1)心率检测(3.2)光线感应器(3.3)手表重量(3.4)手表续航 &a…...
二、如何保证架构的质量、架构前期准备、技术填补与崩溃预防、系统重构
1、如何保证架构的质量 -- 稳定性和健壮性 2、正确的选择是良好的开端 -- 架构前期准备 ① 架构师分类:系统架构师、应用架构师、业务架构师 3、技术填补与崩溃预防 4、系统重构...
14、SQL注入——HTTP文件头注入
文章目录 一、HTTP Header概述1.1 HTTP工作原理1.2 HTTP报文类型1.3 较重要的HTTP Header内容 二、HTTP Header注入2.1 HTTP Header注入的前提条件2.2 常见的HTTP Header注入类型 一、HTTP Header概述 1.1 HTTP工作原理 1.2 HTTP报文类型 (1)请求报文 …...
李宏毅bert记录
一、自监督学习(Self-supervised Learning) 在监督学习中,模型的输入为x,若期望输出是y,则在训练的时候需要给模型的期望输出y以判断其误差——有输入和输出标签才能训练监督学习的模型。 自监督学习在没有标注的训练…...
.Net6.0 Microsoft.AspNetCore.Http.Abstractions 2.20 已弃用
您想要升级 Microsoft.AspNetCore.Http.Abstractions 包,您需要注意以下几点: Microsoft.AspNetCore.Http.Abstractions 包在 ASP.NET Core 2.2 版本后已经被标记为过时,因为它已经被包含在 Microsoft.AspNetCore.App 框架引用中12。因此&am…...
c2-C语言--指针
1.用一级指针遍历一维数组 结论 buf[i]<>*(buf i) <> *(p i)<> p[i] #include <stdio.h>int main(){int buf[5] {10,20 ,30 ,40,50}; //buf[0] --- int // buf --&buf[0] ----int *int *p buf;//&buf[0] --- &*(buf0)printf(&quo…...
kafka入门(四):消费者
消费者 (Consumer ) 消费者 订阅 Kafka 中的主题 (Topic) ,并 拉取消息。 消费者群组( Consumer Group) 每一个消费者都有一个对应的 消费者群组。 一个群组里的消费者订阅的是同一个主题,每个消费者接收主题的一部分分区的消息…...
DFS、BFS求解leetcode图像渲染问题(Java)
目录 leetcode733题.图像渲染 DFS BFS leetcode733题.图像渲染 733. 图像渲染 - 力扣(LeetCode) 有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。 你也被给予三个整数 sr , sc 和 newColor …...
0基础学习云计算难吗?
很多人经常会问云计算是什么?云计算能干什么?学习云计算能做什么工作?其实我们有很多人并不知道云计算是什么,小知今天来给大家讲讲学习云计算能做什么。 中国的云计算行业目前正处于快速发展阶段,随着互联网和数字化…...
【RabbitMQ高级功能详解以及常用插件实战】
文章目录 队列1 、Classic经典队列2、Quorum仲裁队列3、Stream流式队列4、如何使用不同类型的队列 二、死信队列 队列 classic经典队列,Quorum仲裁队列,Stream流式队列 1 、Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中,…...
开源的数据流技术,该选择Redpanda还是Apache Kafka?
本文将比较Apache Kafka和Redpanda两种开源的数据流技术,在云原生实时处理能力上的不同,以及如何在项目中做出选择。 目前,Apache Kafka不但成为了数据流处理领域事实上的标准,而且带动了同类产品的出现。Redpanda就是其中之一…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
