当前位置: 首页 > news >正文

Stochastic Approximation 随机近似方法的详解之(一)

随机近似的定义:它指的是一大类随机迭代算法,用于求根或者优化问题。

Stochastic approximation refers to a broad class of stochastic iterative algorithms solving root finding or optimization problems.

temporal-difference algorithms是随机近似算法的一个特殊情景。

启发例子:均值估计

假设有限集合为X\mathcal{X}X,考虑随机变量XXX 是定义在这个集合的随机变量。我们的目的是估测 E[X]\mathbb{E}[X]E[X],我们是从样本中抽样的方法用样本均值x‾\overline{x}x 近似这个期望的值。x‾\overline{x}x 怎么来算呢?
抽取所有样本然后求均值的方法对于样本量巨大的情况显得很慢。
我们可以考虑用增量迭代(incremental and iterative)的方法:

先说结论,对一个新来的抽样样本,我们可以用这样的方法更新均值:

在这里插入图片描述

证明如下:

wk+1=1k∑i=1kxi=1k(∑i=1k−1xi+xk)=1k((k−1)wk+xk)=wk−1k(wk−xk)w_{k+1}=\frac{1}{k} \sum_{i=1}^k x_i=\frac{1}{k}\left(\sum_{i=1}^{k-1} x_i+x_k\right)=\frac{1}{k}\left((k-1) w_k+x_k\right)=w_k-\frac{1}{k}\left(w_k-x_k\right)wk+1=k1i=1kxi=k1(i=1k1xi+xk)=k1((k1)wk+xk)=wkk1(wkxk)

整个过程数学展开如下:
在这里插入图片描述
相比全部抽样完了再计算均值,这个方法的好处在于每到达一个样本就可以实时的更新均值,使用部分样本计算出来的样本均值可以立马使用。随着抽样的进行,均值的计算结果会越来越精确。

重点!!而上面的均值迭代更新公式可以更一般地表示为:在这里插入图片描述
当这个系数αk\alpha_kαk满足一些条件的时候,这个更新公式是会收敛到 E[X]\mathbb{E}[X]E[X] 的。

至此,我们已经见识了(6-2)和(6-4)两种随机迭代算法。

相关文章:

Stochastic Approximation 随机近似方法的详解之(一)

随机近似的定义:它指的是一大类随机迭代算法,用于求根或者优化问题。 Stochastic approximation refers to a broad class of stochastic iterative algorithms solving root finding or optimization problems. temporal-difference algorithms是随机近…...

软件自动化测试工程师面试题集锦

以下是部分面试题目和我的个人回答,回答比较简略,仅供参考。不对之处请指出 1.自我介绍 答:姓名,学历专业,技能,近期工作经历等,可以引导到最擅长的点,比如说代码或者项目 参考&a…...

智合同丨教你做一个懂AI的法律人

作为一名法律人,合同审核工作是日常工作中最基本也是必不可少的一项事务。我们知道,一般在企业,合同审批会涉及到众多部门和职务角色,最关键的一环其实在法务或者律师建议,其他部门给出的审批意见基本上都是基于自己部…...

如何判断自己使用的IP是独享还是共享?

在互联网上,我们常常听到独享IP和共享IP这两个概念。独享IP指的是一个IP地址只被一个用户或一个网站所使用,而共享IP则是多个用户或多个网站共用一个IP地址。那么,如何分辨IP是不是独享呢?接下来,我们将从几个方面来看。在这之前…...

跳石头

题目描述 一年一度的"跳石头"比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳…...

上传gitee教程,Gitee怎么上传代码到仓库

目录 第一步:配置git的用户名和邮箱 第二步:上传到远程仓库 第三步:将仓库的master分支拉取过来和本地的当前分支进行合并 第四步:将修改的所有代码添加到暂存区 第五步:将缓存区内容添加到本地仓库(…...

netstat命令详解

1、下载netstat命令对应的软件包 yum install net-tools -y2、netsta命令介绍 [rootvm01 ~]# man netstatNETSTAT(8) Linux System Administrators Manual NETSTAT(8)NAMEnetstat - Print network connections, routing t…...

数据库三范式

文章目录数据库三范式1. 第一范式(1NF)2. 第二范式(2NF)3. 第三范式(3NF)数据库三范式 第一范式:有主键,具有原子性,字段不可分割第二范式:完全依赖&#xf…...

K8S 1.20 弃用 Docker 评估之 Docker 和 OCI 镜像格式的差别

背景 2020 年 12 月初,Kubernetes 在其最新的 Changelog 中宣布,自 Kubernetes 1.20 之后将弃用 Docker 作为容器运行时。 弃用 Docker 带来的,可能是一系列的改变,包括不限于: 容器镜像构建工具容器 CLI容器镜像仓…...

Vue2和Vue3响应式的区别

数据响应式是什么? ​所谓 数据响应式 就是建立 响应式数据 与 依赖(调用了响应式数据的操作)之间的关系,当响应式数据发生变化时,可以通知那些使用了这些响应式数据的依赖操作进行相关更新操作,可以是DOM…...

模型实战(6)之Alex实现图像分类:模型原理+训练+预测(详细教程!)

Alex实现图像分类:模型原理+训练+预测 图像分类或者检索任务在浏览器中的搜索操作、爬虫搜图中应用较广,本文主要通过Alex模型实现猫狗分类,并且将可以复用的开源模型在文章中给出!!!数据集可以由此下载:Data本文将从以下内容做出讲述: 1.模型简介及环境搭建2.数据集准…...

【大数据】最全的大数据Hadoop|Yarn|Spark|Flink|Hive技术书籍分享/下载链接,持续更新中...

这里写目录标题Hadoop大数据处理Hadoop技术内幕:深入解析YARN架构设计与实现原理Hadoop 技术内幕:深入解析Hadoop Common 和HDFS 架构设计与实现原理Spark SQL内核剖析Hadoop 应用架构深度剖析Hadoop HDFSHadoop实战Hive编程指南Hadoop大数据处理 本书以…...

RIG Exploit Kit 仍然通过 IE 感染企业用户

RIG Exploit Kit 正处于最成功的时期,每天尝试大约 2000 次入侵并在大约 30% 的案例中成功,这是该服务长期运行历史中的最高比率。 通过利用相对较旧的 Internet Explorer 漏洞,RIG EK 已被发现分发各种恶意软件系列,包括 Dridex…...

GIS在地质灾害危险性评估与灾后重建中的实践技术应用及python机器学习灾害易发性评价模型建立与优化进阶

地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉…...

SQL SERVER中SCHEMA的詳解

SQL SERVER中SCHEMA的講解1. Introduction1.1 優勢1.2 內置schema2. Create Schema2.1 Parameters2.2 Sql3.Awakening1. Introduction 1.1 優勢 数据库模式为我们提供了在数据库中创建逻辑对象组的灵活性。如果多个团队使用同一个数据库,我们可以设计各种模式来分組…...

【LeetCode】剑指 Offer(13)

目录 题目:剑指 Offer 31. 栈的压入、弹出序列 - 力扣(Leetcode) 题目的接口: 解题思路: 代码: 过啦!!! 写在最后: 题目:剑指 Offer 31. 栈…...

帮助小型企业实现业务增长的7种数字营销策略

数字营销一直在不断地变化和发展,在过去的几年里我们已经见识到了其迅猛的发展速度。虽然我们在数字营销中看到了一些新的趋势,但对于小型企业来说很难利用并发挥其优势。相比较大型企业,小型企业的预算和资源通常有限,所以他们很…...

互联网行业的高级产品经理和普通产品经理有哪些区别?

普通产品经理的一天可能是这样的。 早上到公司想一想,这几天有哪些事情要处理。打开记事本,按照上面要求的任务一条一条开始做。 这里有个需求,是要给产品的聊天模块增加历史记录。嗯,看一下常见的几款社交工具 APP,他…...

aardio - 【库】简单信息框

昨晚得知aardio作者一鹤的妻子病情严重,深感悲痛。今日给一鹤捐赠少许,望其妻能挺过难关,早日康复。 aardio是一个很好的编程工具,我非常喜欢,这两年也一直在用。虽然未曾用其获利,但其灵活的语法&#xff…...

程序员必备!最值得收藏的宝藏网站大盘点

做为程序员,没有收藏点宝藏网站都说不过去。 除了常见的大家熟知的知乎、谷歌、b站、CSDN、掘金等,今天将介绍一些其他更加实用的宝藏网站,程序员小伙伴们可以按需收藏哦~ 1.菜鸟教程:https://www.runoob.com/ 国内…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...