Python统计Labelme标注文件信息并绘制散点图
Python统计Labelme标注文件信息并绘制散点图
- 前言
- 前提条件
- 相关介绍
- 实验环境
- Python统计Labelme标注文件信息并绘制散点图
前言
- 本文是个人使用Python处理文件的电子笔记,由于水平有限,难免出现错漏,敬请批评改正。
- 更多精彩内容,可点击进入我的个人主页查看
前提条件
- 熟悉Python
相关介绍
- Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
- Python OS模块是负责程序与操作系统的交互,提供了访问操作系统底层的接口和非常丰富的方法用来处理文件和目录。
实验环境
- Python 3.x (面向对象的高级语言)
Python统计Labelme标注文件信息并绘制散点图
import os
import cv2
import json
import pyecharts.options as opts
from pyecharts.charts import Scatter
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker# 图像显示函数
def show(name, img):cv2.namedWindow(name, 0) # 用来创建指定名称的窗口,0表示CV_WINDOW_NORMAL# cv2.resizeWindow(name, img.shape[1], img.shape[0]); # 设置宽高大小为640*480cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()def count_json_label(in_json_path,label_num,width_list,height_list,area_list):with open(in_json_path, "r", encoding='utf-8') as f:# json.load数据到变量json_datajson_data = json.load(f)# 统计标签数for i in json_data['shapes']:if i['label'] in label_num.keys():label_num[i['label']] = label_num[i['label']] + 1else:label_num[i['label']] = 1# 生成存储长和宽数据的列表for i in json_data['shapes']:w = i['points'][1][0] - i['points'][0][0]h = i['points'][1][1] - i['points'][0][1]# print(w,h)width_list.append(abs(w))height_list.append(abs(h))area_list.append(abs(w)*abs(h))def write_info_txt(txt_path,label_num,width_list,height_list,area_list):with open('rect_info.txt','w') as f:f.write('总标注数:'+str(sum(label_num.values()))+'\n')f.write('label_num:'+str(label_num)+ '\n')f.write('min(width_list):'+str(min(width_list))+'\n')f.write('len(width_list):'+str(len(width_list))+'\n')f.write('min(height_list):'+str(min(height_list))+'\n')f.write('len(height_list):'+str(len(height_list))+'\n')f.write('min(area_list):'+str(min(area_list))+'\n')f.write('len(area_list):'+str(len(area_list))+'\n')def draw_scatter(width_list,height_list):x_data = width_listy_data = height_list(Scatter().add_xaxis(xaxis_data=x_data).add_yaxis(series_name="(width,height)",y_axis=y_data,symbol_size=3,label_opts=opts.LabelOpts(is_show=False),).set_series_opts().set_global_opts(xaxis_opts=opts.AxisOpts(name = 'Width',type_="value", splitline_opts=opts.SplitLineOpts(is_show=True)),yaxis_opts=opts.AxisOpts(name = 'Height',type_="value",axistick_opts=opts.AxisTickOpts(is_show=True),splitline_opts=opts.SplitLineOpts(is_show=True),),tooltip_opts=opts.TooltipOpts(formatter=JsCode("function (params) {return ' ( ' +params.value[0] + ' , ' + params.value[1]+ ' )';}")),).render("w_h_scatter_chart.html"))if __name__=="__main__":in_dir_name = 'jsons/' # 图片和json所在文件夹# out_dir_name = 'output/'all_name_list = os.listdir(in_dir_name) # 获取文件夹内所有文件名列表# 获取所有json文件,并修改json_name_list = [i for i in all_name_list if i.endswith('.json')] # 图片路径列表# print(json_name_list)label_num = {}width_list = []height_list = []area_list = []for json_name in json_name_list: # 遍历json文件并修改in_json_path = in_dir_name + json_name# print(in_json_path)count_json_label(in_json_path,label_num,width_list,height_list,area_list)print('总标注数:',sum(label_num.values()))print('label_num:',label_num)# print('width_list:',width_list)print('min(width_list):',min(width_list))print('len(width_list):',len(width_list))# print('height_list:',height_list)print('min(height_list):',min(height_list))print('len(height_list):',len(height_list))# print('area_list:',area_list)print('min(area_list):',min(area_list))print('len(area_list):',len(area_list))# 写入信息到txt文件中
write_info_txt('rect_info.txt',label_num,width_list,height_list,area_list)
# 生成散点图
draw_scatter(width_list,height_list)
总标注数: 3504
label_num: {'1': 2612, '2': 228, '0': 151}
min(width_list): 7.420494699646497
len(width_list): 3504
min(height_list): 9.30232558139528
len(height_list): 3504
min(area_list): 76.04040504938182
len(area_list): 3504

更多精彩内容,可点击进入Python日常小操作专栏或我的个人主页查看
相关文章:
Python统计Labelme标注文件信息并绘制散点图
Python统计Labelme标注文件信息并绘制散点图前言前提条件相关介绍实验环境Python统计Labelme标注文件信息并绘制散点图前言 本文是个人使用Python处理文件的电子笔记,由于水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击…...
远程接入方案 OpenText Exceed TurboX(ETX) 客户案例——ET Innovations
远程接入方案 OpenText Exceed TurboX(ETX) 客户案例——ET Innovations ET Innovations GmbH 助力奥地利各地的医疗保健专业人员提升患者体验 医疗保健信息系统开发商利用 OpenText™ Exceed™ TurboX 将远程访问其软件的稳定性提高了 95% 公司:ET I…...
Django4.1.7通过djongo1.3.6链接mongoDB6.0.4
网上中文版的djongo链接mongoDB基本都是抄袭州的先生大哥的文章。 文章成文比较久,至少是2019年成文的了,有一些情况发生了变化,今天就自己测试的情况做一些记录。 本文成文日期为:2023年3月2日,请注意参考 废话不多说…...
如何使用FindFunc在IDA Pro中寻找包含指定代码模式的函数代码
关于FindFunc FindFunc是一款功能强大的IDA Pro插件,可以帮助广大研究人员轻松查找包含了特定程序集、代码字节模式、特定命名、字符串或符合其他各种约束条件的代码函数。简而言之,FindFunc的主要目的就是在二进制文件中寻找已知函数。 使用规则过滤 …...
【C++】讲的最通透最易懂的关于结构体内存对齐的问题
目录1. 内存对齐规则2. 简单易懂的内存对齐示例2.1 简单结构体2.2 含位域的结构体2.3 空类的大小2.4 嵌套结构体3. 为什么需要内存对齐?4. 类型在不同系统下所占字节数1. 内存对齐规则 第一个成员在与结构体变量偏移量为0的位置处。其他成员变量要对齐到某个数字&a…...
Stochastic Approximation 随机近似方法的详解之(一)
随机近似的定义:它指的是一大类随机迭代算法,用于求根或者优化问题。 Stochastic approximation refers to a broad class of stochastic iterative algorithms solving root finding or optimization problems. temporal-difference algorithms是随机近…...
软件自动化测试工程师面试题集锦
以下是部分面试题目和我的个人回答,回答比较简略,仅供参考。不对之处请指出 1.自我介绍 答:姓名,学历专业,技能,近期工作经历等,可以引导到最擅长的点,比如说代码或者项目 参考&a…...
智合同丨教你做一个懂AI的法律人
作为一名法律人,合同审核工作是日常工作中最基本也是必不可少的一项事务。我们知道,一般在企业,合同审批会涉及到众多部门和职务角色,最关键的一环其实在法务或者律师建议,其他部门给出的审批意见基本上都是基于自己部…...
如何判断自己使用的IP是独享还是共享?
在互联网上,我们常常听到独享IP和共享IP这两个概念。独享IP指的是一个IP地址只被一个用户或一个网站所使用,而共享IP则是多个用户或多个网站共用一个IP地址。那么,如何分辨IP是不是独享呢?接下来,我们将从几个方面来看。在这之前…...
跳石头
题目描述 一年一度的"跳石头"比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳…...
上传gitee教程,Gitee怎么上传代码到仓库
目录 第一步:配置git的用户名和邮箱 第二步:上传到远程仓库 第三步:将仓库的master分支拉取过来和本地的当前分支进行合并 第四步:将修改的所有代码添加到暂存区 第五步:将缓存区内容添加到本地仓库(…...
netstat命令详解
1、下载netstat命令对应的软件包 yum install net-tools -y2、netsta命令介绍 [rootvm01 ~]# man netstatNETSTAT(8) Linux System Administrators Manual NETSTAT(8)NAMEnetstat - Print network connections, routing t…...
数据库三范式
文章目录数据库三范式1. 第一范式(1NF)2. 第二范式(2NF)3. 第三范式(3NF)数据库三范式 第一范式:有主键,具有原子性,字段不可分割第二范式:完全依赖…...
K8S 1.20 弃用 Docker 评估之 Docker 和 OCI 镜像格式的差别
背景 2020 年 12 月初,Kubernetes 在其最新的 Changelog 中宣布,自 Kubernetes 1.20 之后将弃用 Docker 作为容器运行时。 弃用 Docker 带来的,可能是一系列的改变,包括不限于: 容器镜像构建工具容器 CLI容器镜像仓…...
Vue2和Vue3响应式的区别
数据响应式是什么? 所谓 数据响应式 就是建立 响应式数据 与 依赖(调用了响应式数据的操作)之间的关系,当响应式数据发生变化时,可以通知那些使用了这些响应式数据的依赖操作进行相关更新操作,可以是DOM…...
模型实战(6)之Alex实现图像分类:模型原理+训练+预测(详细教程!)
Alex实现图像分类:模型原理+训练+预测 图像分类或者检索任务在浏览器中的搜索操作、爬虫搜图中应用较广,本文主要通过Alex模型实现猫狗分类,并且将可以复用的开源模型在文章中给出!!!数据集可以由此下载:Data本文将从以下内容做出讲述: 1.模型简介及环境搭建2.数据集准…...
【大数据】最全的大数据Hadoop|Yarn|Spark|Flink|Hive技术书籍分享/下载链接,持续更新中...
这里写目录标题Hadoop大数据处理Hadoop技术内幕:深入解析YARN架构设计与实现原理Hadoop 技术内幕:深入解析Hadoop Common 和HDFS 架构设计与实现原理Spark SQL内核剖析Hadoop 应用架构深度剖析Hadoop HDFSHadoop实战Hive编程指南Hadoop大数据处理 本书以…...
RIG Exploit Kit 仍然通过 IE 感染企业用户
RIG Exploit Kit 正处于最成功的时期,每天尝试大约 2000 次入侵并在大约 30% 的案例中成功,这是该服务长期运行历史中的最高比率。 通过利用相对较旧的 Internet Explorer 漏洞,RIG EK 已被发现分发各种恶意软件系列,包括 Dridex…...
GIS在地质灾害危险性评估与灾后重建中的实践技术应用及python机器学习灾害易发性评价模型建立与优化进阶
地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉…...
SQL SERVER中SCHEMA的詳解
SQL SERVER中SCHEMA的講解1. Introduction1.1 優勢1.2 內置schema2. Create Schema2.1 Parameters2.2 Sql3.Awakening1. Introduction 1.1 優勢 数据库模式为我们提供了在数据库中创建逻辑对象组的灵活性。如果多个团队使用同一个数据库,我们可以设计各种模式来分組…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...
SQL进阶之旅 Day 22:批处理与游标优化
【SQL进阶之旅 Day 22】批处理与游标优化 文章简述(300字左右) 在数据库开发中,面对大量数据的处理任务时,单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”,深入探讨如何通过批量操作和游标技术提…...
Electron简介(附电子书学习资料)
一、什么是Electron? Electron 是一个由 GitHub 开发的 开源框架,允许开发者使用 Web技术(HTML、CSS、JavaScript) 构建跨平台的桌面应用程序(Windows、macOS、Linux)。它将 Chromium浏览器内核 和 Node.j…...
