当前位置: 首页 > news >正文

java版Spring Cloud+Spring Boot+Mybatis之隐私计算 FATE - 多分类神经网络算法测试

一、说明

本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测

  • 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种 (0 或者 1),例如性别只有  或者 ;此时的分类算法其实是在构建一个分类线将数据划分为两个类别。
  • 多分类算法:是指待预测的 label 标签的取值可能有多种情况,例如个人爱好可能有 篮球足球电影 等等多种类型。常见算法:Softmax、SVM、KNN、决策树。

关于 Fate 的核心概念、单机部署、训练以及预测请参考以下相关文章:

  • 《隐私计算 FATE - 关键概念与单机部署指南》
  • 《隐私计算 FATE - 模型训练》
  • 《隐私计算 FATE - 离线预测》

二、准备训练数据

上传到 Fate 里的数据有两个字段名必需是规定的,分别是主键为 id 字段和分类字段为 y 字段,y 字段就是所谓的待预测的 label 标签;其他的特征字段 (属性) 可任意填写,例如下面例子中的 x0 - x9

例如有一条用户数据为: 收入 : 10000,负债 : 5000,是否有还款能力 : 1 ;数据中的 收入 和 负债 就是特征字段,而 是否有还款能力 就是分类字段。

本文只描述关键部分,关于详细的模型训练步骤,请查看文章《隐私计算 FATE - 模型训练》

2.1. guest 端

10 条数据,包含 1 个分类字段 y 和 10 个标签字段 x0 - x9

y 值有 0、1、2、3 四个分类

上传到 Fate 中,表名为 muti_breast_homo_guest 命名空间为 experiment

2.2. host 端

10 条数据,字段与 guest 端一样,但是内容不一样

上传到 Fate 中,表名为 muti_breast_homo_host 命名空间为 experiment

三、执行训练任务

3.1. 准备 dsl 文件

创建文件 homo_nn_dsl.json 内容如下 :

{"components": {"reader_0": {"module": "Reader","output": {"data": ["data"]}},"data_transform_0": {"module": "DataTransform","input": {"data": {"data": ["reader_0.data"]}},"output": {"data": ["data"],"model": ["model"]}},"homo_nn_0": {"module": "HomoNN","input": {"data": {"train_data": ["data_transform_0.data"]}},"output": {"data": ["data"],"model": ["model"]}}}
}

3.2. 准备 conf 文件

创建文件 homo_nn_multi_label_conf.json 内容如下 :

{"dsl_version": 2,"initiator": {"role": "guest","party_id": 9999},"role": {"arbiter": [10000],"host": [10000],"guest": [9999]},"component_parameters": {"common": {"data_transform_0": {"with_label": true},"homo_nn_0": {"encode_label": true,"max_iter": 15,"batch_size": -1,"early_stop": {"early_stop": "diff","eps": 0.0001},"optimizer": {"learning_rate": 0.05,"decay": 0.0,"beta_1": 0.9,"beta_2": 0.999,"epsilon": 1e-07,"amsgrad": false,"optimizer": "Adam"},"loss": "categorical_crossentropy","metrics": ["accuracy"],"nn_define": {"class_name": "Sequential","config": {"name": "sequential","layers": [{"class_name": "Dense","config": {"name": "dense","trainable": true,"batch_input_shape": [null,18],"dtype": "float32","units": 5,"activation": "relu","use_bias": true,"kernel_initializer": {"class_name": "GlorotUniform","config": {"seed": null,"dtype": "float32"}},"bias_initializer": {"class_name": "Zeros","config": {"dtype": "float32"}},"kernel_regularizer": null,"bias_regularizer": null,"activity_regularizer": null,"kernel_constraint": null,"bias_constraint": null}},{"class_name": "Dense","config": {"name": "dense_1","trainable": true,"dtype": "float32","units": 4,"activation": "sigmoid","use_bias": true,"kernel_initializer": {"class_name": "GlorotUniform","config": {"seed": null,"dtype": "float32"}},"bias_initializer": {"class_name": "Zeros","config": {"dtype": "float32"}},"kernel_regularizer": null,"bias_regularizer": null,"activity_regularizer": null,"kernel_constraint": null,"bias_constraint": null}}]},"keras_version": "2.2.4-tf","backend": "tensorflow"},"config_type": "keras"}},"role": {"host": {"0": {"reader_0": {"table": {"name": "muti_breast_homo_host","namespace": "experiment"}}}},"guest": {"0": {"reader_0": {"table": {"name": "muti_breast_homo_guest","namespace": "experiment"}}}}}}
}

注意 reader_0 组件的表名和命名空间需与上传数据时配置的一致。

3.3. 提交任务

执行以下命令:

flow job submit -d homo_nn_dsl.json -c homo_nn_multi_label_conf.json

执行成功后,查看 dashboard 显示:

四、准备预测数据

与前面训练的数据字段一样,但是内容不一样,y 值全为 0

4.1. guest 端

上传到 Fate 中,表名为 predict_muti_breast_homo_guest 命名空间为 experiment

4.2. host 端

上传到 Fate 中,表名为 predict_muti_breast_homo_host 命名空间为 experiment

五、准备预测配置

本文只描述关键部分,关于详细的预测步骤,请查看文章《隐私计算 FATE - 离线预测》

创建文件 homo_nn_multi_label_predict.json 内容如下 :

{"dsl_version": 2,"initiator": {"role": "guest","party_id": 9999},"role": {"arbiter": [10000],"host": [10000],"guest": [9999]},"job_parameters": {"common": {"model_id": "arbiter-10000#guest-9999#host-10000#model","model_version": "202207061504081543620","job_type": "predict"}},"component_parameters": {"role": {"guest": {"0": {"reader_0": {"table": {"name": "predict_muti_breast_homo_guest","namespace": "experiment"}}}},"host": {"0": {"reader_0": {"table": {"name": "predict_muti_breast_homo_host","namespace": "experiment"}}}}}}
}

注意以下两点:

  1. model_id 和 model_version 需修改为模型部署后的版本号。

  2. reader_0 组件的表名和命名空间需与上传数据时配置的一致。

六、执行预测任务

执行以下命令:

flow job submit -c homo_nn_multi_label_predict.json

执行成功后,查看 homo_nn_0 组件的数据输出:

可以看到算法输出的预测结果。

相关文章:

java版Spring Cloud+Spring Boot+Mybatis之隐私计算 FATE - 多分类神经网络算法测试

一、说明 本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测。 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种 (0 或者 1)&…...

Java之时间类2(JDK8新增)

一、Date类 &#xff08;一&#xff09;、ZoneId&#xff1a;时区 1、概述 ZoneId是Java 8中处理时区的类。它用于表示时区标识符&#xff0c;例如“America/New_York”或“Asia/Tokyo”。一共有600个时区。 2、常用方法: static Set<String> getAvailableZoneIds()获…...

MySQL InnoDB Replication部署方案与实践

1. 概述 MySQL Innodb ReplicaSet 是 MySQL 团队在 2020 年推出的一款产品&#xff0c;用来帮助用户快速部署和管理主从复制&#xff0c;在数据库层仍然使用的是主从复制技术。 ReplicaSet 主要包含三个组件&#xff1a;MySQL Router、MySQL Server 以及 MySQL Shell 高级客户…...

进程的同步和异步、进程互斥

一、进程同步和异步 同步&#xff08;Synchronous&#xff09;&#xff1a; 同步指的是程序按照顺序执行&#xff0c;一个操作完成后才能进行下一个操作。在多进程或多线程的环境中&#xff0c;同步意味着一个进程&#xff08;或线程&#xff09;在执行某个任务时&#xff0c;…...

搞定课件录制,新手必备指南!

“有人知道课件怎么录制吗&#xff1f;学校要求我们师范专业的学生出去实习&#xff0c;现在需要录制一个课件视频&#xff0c;以便在课堂上播放&#xff0c;可是我不会录制教学视频&#xff0c;真的很头疼&#xff0c;有人能帮帮我吗。” 随着在线教育的崛起&#xff0c;课件…...

DevOps搭建(九)-Jenkins实现基础CI、CD详细操作

1、创建可运行SpringBoot项目 1.1、创建一个新工程 在idea里创建一个项目,这里叫devops-test,如下图: String Boot版本要选择2.x的,依赖直选中Spring Web选项即可: 修改pom.xml文件,在build标签中增加如下内容,目的是简化jar包名称。 <finalName>devops-test&l…...

十指波课堂:让学习编程不再是难事

十指波课堂是一家致力于发展线上私教平台的教育机构&#xff0c;主要的科目是计算机编程相关语言。由于学习编程的过程较为困难&#xff0c;学习者没有具体的学习方向&#xff0c;将要达到的就业水平不明&#xff0c;总会因为一些小问题困扰几个小时&#xff0c;这样会严重的影…...

IDEA卡顿,进行性能优化设置(亲测有效)——情况二

问题背景与现象 IDEA今天突然显示到期&#xff0c;于是从同事那边搞到一个很好用的破解方式&#xff0c;说实话&#xff0c;非常方便&#xff08;后续在安前码后中分享&#xff09; 破解之后呢&#xff0c;香了一阵子&#xff0c;但是突然显示开始卡顿&#xff0c;界面几乎是…...

利用Python和OpenCV实现将图像识别为Excel表格的便捷方法

当今社会&#xff0c;图像识别技术的发展为我们提供了许多便利&#xff0c;比如将图像中的文本信息转化为可编辑的电子表格。在本文中&#xff0c;我们将介绍如何利用Python结合OpenCV和pytesseract库&#xff0c;来实现将图像识别为Excel表格的过程。 首先&#xff0c;我们需…...

mysql:查看一个表的索引信息

可以使用命令SHOW INDEX FROM table_name;查看一个表的索引信息&#xff0c;例如&#xff1a;...

12月11日作业

完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号和密码不匹配&#xf…...

HTTP协议在Linux上进行数据库访问代码示例

在Linux上使用HTTP协议进行数据库访问通常涉及到使用库如requests来进行HTTP请求&#xff0c;以及使用json或类似的库来处理返回的数据。下面是一个使用Python的简单示例&#xff0c;展示如何通过HTTP协议在Linux上访问数据库。 首先&#xff0c;你需要确保你的Linux系统上已经…...

CS.DEEP | 基于 openGauss 实现的计算机论坛项目

前言 本项目是一个基于前后端分离&#xff08;后端&#xff1a;SpringBoot openGauss&#xff0c;前端&#xff1a;Vue3 Element Plus&#xff09;实现的开源计算机博客论坛项目&#xff0c;旨在为用户提供一个方便、高效的博客发布和交流平台。 本平台支持 Markdown 编辑&…...

【ArcGIS Pro微课1000例】0053:基于SQL Server创建与启用地理数据库

之前的文章有讲述基于SQL Server创建企业级地理数据库,本文讲述在SQL Server中创建常规的关心数据库,然后在ArcGIS Pro中将其启用,转换为企业级地理数据库。 1. 在SQL Server中创建数据库** 打开SQL Server 2019,连接到数据库服务器。 展开数据库连接,在数据库上右键→新…...

快速排序(2)

一、快速排序有三种方法&#xff1a;hoare版本、挖坑法、前后指针版本 但是三种方法的核心思想都是一样的&#xff0c;都是将该数组分为左右两半递归式的排序。 1.hoare版本 该方法是先保存a[keyi]位置的值&#xff0c;然后右边先开动找小&#xff0c;找到小后&#xff0c;左…...

持续集成和持续交付

引言 CI/CD 是一种通过在应用开发阶段引入自动化来频繁向客户交付应用的方法。CI/CD 的核心概念是持续集成、持续交付和持续部署。作为一种面向开发和运维团队的解决方案&#xff0c;CI/CD 主要针对在集成新代码时所引发的问题&#xff08;亦称&#xff1a;“集成地狱”&#…...

C#、JavaScript、VBScript解析JSON数据源码

本示例使用设备&#xff1a;WIFI/TCP/UDP/HTTP协议RFID液显网络读卡器可二次开发语音播报POE-淘宝网 (taobao.com) C#解析JSON数据 string dispstr "{" getChinesecode("扫码") ":}" data; //显示信息,注意中文汉字一定要转换为设备能显…...

JVM面试连环炮:你准备好迎接挑战了吗?

在Java开发领域&#xff0c;JVM面试一直是一个热门话题。作为一名优秀的开发者&#xff0c;你是否已经准备好迎接这场挑战了呢&#xff1f;今天&#xff0c;我们就来深度解析一下JVM面试的热点问题&#xff0c;帮助你更好地应对面试&#xff0c;一举拿下offer&#xff01; 1、…...

Ansible通过kubernetes.core.k8s_info和kubernetes.core.k8s访问OCP

文章目录 环境OCPClient&#xff08;Ansible控制节点&#xff09; 步骤准备工作在client端配置ssh免密登录OCP端在client端安装Ansible kubernetes.core.k8s_info第1次尝试在OCP端安装python和pip3在OCP端安装kubernetes在OCP端安装PyYAML第2次尝试在OCP端配置config文件第3次尝…...

vscode汉化

安装插件 Chinese (Simplified) (简体中文) Language Pack for 重新打开&#xff0c;若还是没有汉化&#xff1a; 【CtrlShiftp】 输入“configure display language”&#xff0c;回车键 选择刚刚安装的 中文(简体)...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...