当前位置: 首页 > news >正文

【面试常考题目】五种方法解决“如何在n个无序数组中找出它的中位数(java)”问题

1.3 从N个数组中找到中位数,每一个数组可能乱序

在LeetCode上,"寻找多个数组的中位数"这类问题通常是由两个数组合并中位数问题(即LeetCode第4题)的变种或扩展。直接对应于多个数组合并后寻找中位数的题目在LeetCode上并不常见,但是可以通过扩展第4题的解决方案来处理。

处理多个数组合并后寻找中位数的问题,有几种可能的方法:

  1. 合并后排序:将所有数组合并成一个大数组,然后对这个数组进行排序,最后找到中位数。这种方法简单直接,但如果数组总长度非常大时,可能效率不高。

  2. n路归并排序:合并的时候先将各个数组排序,然后采用n路归并的方式不断的将有序值取出(会用到数组指针,每一个元素对应其数组被取出元素的进度),直至取出到总长度的一半,时间复杂度为(n*logx)+O(TL),其中前者为各个数组的排序的时间复杂度之和(假设最长的数组长度为x),后者为这n个数组的总长度。

  3. (n路归并的优化)优先队列(堆):使用最小堆(或最大堆)逐个合并数组。每次从堆中取出最小(或最大)元素,直到达到总长度的一半,以此找到中位数。这种方法比直接排序更高效一些。

  4. 基于快速排序的选择方法(效率最快):基于215. 数组中的第K个最大元素想出来的一种方法,首先需要将n个数组合并,然后对其基于215题进行求解

  5. 分治+二分法:这是参考LeetCode第4题的一种解决方案。LC第四题是从两个有序数组通过二分找到中位数,那么我们可以先将各个子数组排序,通过分治将数组两两合并成两个大数组,然后再调用LC第四题的方法api完成最终的中位数查找。

尽管LeetCode上可能没有直接对应多个数组合并寻找中位数的题目,上述方法提供了一些处理此类问题的思路。在实际编程挑战或面试中,这些方法可能会派上用场。

1.3.1 合并后排序(略)

1.3.2 合并的时候先将各个数组排序,然后采用n路归并的方式不断的将有序值取出(会用到数组指针,每一个元素对应其数组被取出元素的进度),直至取出到总长度的一半,时间复杂度为(nlogx)+O(n*TL),其中前者为各个数组的排序的时间复杂度之和(假设最长的数组长度为x),后者TL为这n个数组的总长度。

1 详细步骤

您的方法是一个有效的解决方案,它结合了排序和n路归并排序的思想来找到多个数组中的中位数。以下是对您方法的具体分析:

  1. 先排序:首先对每个数组进行排序。这确保了每个数组内部是有序的,是归并过程中的关键前提。

  2. n路归并:利用归并排序的思路,您维护了一个指针数组来追踪每个数组的当前位置。在每一步中,您会从所有数组的当前位置中选出最小的元素,并将相应数组的指针向前移动一位。

  3. 取出到总长度的一半:由于中位数是位于排序后数组的中间位置,您只需要进行归并操作直到达到所有数组元素总数的一半。这样就可以找到中位数,无需完全归并所有数组。

这种方法的优点是,它避免了对整个合并后的数组进行完整排序,从而减少了不必要的计算,特别是在数据量很大时更有效率。另外,这种方法适用于数组初始时无序的情况,使其成为解决此类问题的一个实用方案。

2 代码实现
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;public class Test3 {public static void main(String[] args) {Random random=new Random();List<List<Integer>>list=new ArrayList<>();int n= random.nextInt(5)+1;for (int i = 0; i < n; i++) {int size= random.nextInt(10)+1;List<Integer>tmp=new ArrayList<>();for (int j = 0; j < size; j++) {tmp.add(random.nextInt(100)-50);}list.add(tmp);}for (int i = 0; i < list.size(); i++) {System.out.println("i:"+i+", "+list.get(i).toString());}System.out.println(getMid(list));}static float getMid(List<List<Integer>>list){list.forEach((o)->{Collections.sort(o);});int n= list.size();if(n==0) return 0.0f;int[]ps=new int[n];int tl=0;for (int i = 0; i < n; i++) {tl+=list.get(i).size();}// corner caseif(tl==1)return list.get(0).get(0);int mid=tl/2;int p=0;int preV=Integer.MAX_VALUE,curV=Integer.MAX_VALUE;while(p<mid+1){int minV=Integer.MAX_VALUE,pos=0;//从n个数组中找到最小那一个及其指针for (int i = 0; i < n; i++) {if(ps[i]<list.get(i).size()&&minV>list.get(i).get(ps[i])){minV=list.get(i).get(ps[i]);pos=i;}}ps[pos]++;//更新当前加入数组的值及其前一个有序值preV=curV;curV=minV;p++;}//总长度为偶数时的返回值if(tl%2==1)return preV;return (float) ((preV+curV)/2.0);}
}

1.3.3 优先队列(对1.3.2方法的改进):使用一个能装n个元素最小堆逐个合并数组。每次从堆中pop取出最小元素,同时会从pop出的元素所属的数组中再取出一个元素使其填满n个,直到达到总长度的一半,以此找到中位数。这种方法比直接排序更高效一些。

1 详细步骤

使用优先队列(堆)来找到多个数组的中位数是一种高效的方法,特别是当处理多个大型数组时。这种方法的关键在于逐步合并这些数组,同时保持总体的运行效率。以下是具体的步骤和解释:

  1. 初始化优先队列:首先,创建一个最小堆(或最大堆,取决于具体实现)。优先队列(堆)将用于存储每个数组中的元素,同时保持它们的排序顺序。

  2. 填充堆:遍历每个数组,将每个数组的第一个元素(假设数组已排序)加入到优先队列中。为了追踪每个元素属于哪个数组以及在其数组中的位置,你可能需要存储额外的信息,比如数组索引和元素索引。

  3. 逐步取出元素:从优先队列中逐个取出元素。由于优先队列是一个最小堆(或最大堆),每次都能够取出当前所有数组中的最小(或最大)元素。

  4. 继续填充堆:每当从优先队列中取出一个元素,就从该元素所属的数组中取出下一个元素(如果存在)并将其加入到优先队列中。这样做可以保持堆中始终有所有数组中当前未处理的最小(或最大)元素。

  5. 找到中位数:重复上述过程,直到从优先队列中取出了总长度一半的元素。此时,取出的最后一个元素(或者最后两个元素的平均值,取决于总长度是奇数还是偶数)就是中位数。

这种方法的时间复杂度主要由优先队列的操作决定,即O(n log k),其中n是所有数组中总元素的数量,k是数组的数量。这比直接合并所有数组后进行排序的O(n log n)更高效,特别是当k远小于n时。此外,这种方法的空间复杂度为O(k),因为优先队列中最多同时包含k个元素。

2 代码实现
import java.util.*;public class Test3 {public static void main(String[] args) {Random random=new Random();List<List<Integer>>list=new ArrayList<>();int n= random.nextInt(2)+1;for (int i = 0; i < 2; i++) {int size= random.nextInt(2)+1;List<Integer>tmp=new ArrayList<>();for (int j = 0; j < size; j++) {tmp.add(random.nextInt(100)-50);}list.add(tmp);}for (int i = 0; i < list.size(); i++) {System.out.println("i:"+i+", "+list.get(i).toString());}System.out.println(getMid(list));}static float getMid(List<List<Integer>>list){list.forEach((o)->{Collections.sort(o);});int n= list.size();if(n==0) return 0.0f;int tl=0;for (int i = 0; i < n; i++) {tl+=list.get(i).size();}// corner caseif(tl==1)return list.get(0).get(0);// entry<arr_id,pos>PriorityQueue<Map.Entry<Integer,Integer>>pq=new PriorityQueue<>((o1,o2)->(list.get(o1.getKey()).get(o1.getValue())-list.get(o2.getKey()).get(o2.getValue())));for (int i = 0; i < n; i++) {pq.offer(new AbstractMap.SimpleEntry<>(i,0));}int mid=tl/2;int p=0;int preV=Integer.MAX_VALUE,curV=Integer.MAX_VALUE;while(p<mid+1){//从n个数组中找到最小那一个及其指针Map.Entry<Integer,Integer>e=pq.poll();int arrId=e.getKey();//属于哪一个数组int pos=e.getValue();//进度指针if(pos+1<list.get(arrId).size()){Map.Entry<Integer,Integer>ne=new AbstractMap.SimpleEntry<>(arrId,pos+1);pq.offer(ne);}//更新当前加入数组的值及其前一个有序值preV=curV;curV=list.get(arrId).get(pos);p++;}if(tl%2==1)return curV;//总长度为偶数时的返回值return (float) ((preV+curV)/2.0);}
}
3 时间复杂度:比1.3.2复杂度更低

时间复杂度为(nlogx)+O(log(n)*TL),其中前者为各个数组的排序的时间复杂度之和(假设最长的数组长度为x),TL后者为这n个数组的总长度。

1.3.4 基于快速排序的选择方法

1 思路

参考LC215数组中的第K个最大元素,这个题采用了基于快速排序的选择方法,时间复杂度是O(n),我们知道对于长度为n的数组,n为奇数时,n中位数即是第(n/2+1)小的元素,n为偶数时,n中位数即是第(n/2)小的元素和第(n/2+1)小的元素元素之和的一半。我们知道无论k是多少,最坏的时间复杂度为O(n)

2 代码

假设所有数组的总长度为X,则其时间和空间复杂度均为O(X)

import java.util.*;public class Test3 {public static void main(String[] args) {Random random=new Random();List<List<Integer>>list=new ArrayList<>();int n= random.nextInt(2)+1;for (int i = 0; i < 4; i++) {int size= random.nextInt(2)+1;List<Integer>tmp=new ArrayList<>();for (int j = 0; j < size; j++) {tmp.add(random.nextInt(100)-50);}list.add(tmp);}for (int i = 0; i < list.size(); i++) {System.out.println("i:"+i+", "+list.get(i).toString());}System.out.println(getMid(list));}static float getMid(List<List<Integer>>list){List<Integer>tmp=new ArrayList<>();int n=list.size();//合并所有无序的数组for (int i = 0; i < n; i++) {tmp.addAll(list.get(i));}int mid=tmp.size()/2;if(tmp.size()%2==1){return findK(tmp,mid,0,tmp.size()-1);}else{return (float) ((findK(tmp,mid-1,0,tmp.size()-1)+findK(tmp,mid,0,tmp.size()-1))/2.0);}}// 参考LC215. 数组中的第K个最大元素的解法static int findK(List<Integer>ls, int k, int l, int r){Random random=new Random();int rp= random.nextInt(r-l+1)+l;swap(ls,r,rp);int base=ls.get(r);int low=l,high=r;for (int i = l; i <= high;) {if(ls.get(i)>base){swap(ls,i,high--);}else if(ls.get(i)<base){swap(ls,i++,low++);}else {i++;}}if(k<low){return findK(ls, k,l,low-1);}else if(k>=low&&k<=high){return ls.get(low);}return findK(ls,k,high+1,r);}static void swap(List<Integer>ls, int i, int j){int t=ls.get(i);ls.set(i,ls.get(j));ls.set(j,t);}
}

相关文章:

【面试常考题目】五种方法解决“如何在n个无序数组中找出它的中位数(java)”问题

1.3 从N个数组中找到中位数&#xff0c;每一个数组可能乱序 在LeetCode上&#xff0c;"寻找多个数组的中位数"这类问题通常是由两个数组合并中位数问题&#xff08;即LeetCode第4题&#xff09;的变种或扩展。直接对应于多个数组合并后寻找中位数的题目在LeetCode上…...

打包CSS

接上一个打包HTML继续进行CSS的打包 1.在之前的文件夹里的src文件夹创建一个css文件 2.在浏览器打开webpack——>中文文档——>指南——>管理资源——>加载CSS 3.复制第一句代码到终端 4.复制下图代码到webpack.config.js脚本的plugins&#xff1a;[.....]内容下…...

Java项目开发,业务比较复杂如何减少bug

Java项目开发&#xff0c;业务比较复杂如何减少bug 当Java开发工作涉及复杂业务时&#xff0c;可以采取以下方法来减少bug的数量&#xff1a; 1、深入了解业务需求 充分了解业务需求&#xff0c;与业务人员进行充分的沟通和交流&#xff0c;确保对需求的理解正确。在需求分析…...

[EFI]Atermiter X99 Turbo D4 E5-2630v3电脑 Hackintosh 黑苹果efi引导文件

硬件型号驱动情况主板 Atermiter X99 Turbo D4 处理器 Intel Xeon E5-2630v3 已驱动内存Desktop DDR4 2666 MHz已驱动硬盘Netac NV7000已驱动显卡AMD Radeon RX 5700xt已驱动声卡瑞昱 英特尔 High Definition Audio 控制器ALC897已驱动网卡LucyRTL8125已驱动无线网卡蓝牙Broad…...

map.getOrDefault

map.getOrDefault 是 Java 中的一个方法&#xff0c;用于从 Map 中获取指定键的值&#xff0c;如果键不存在&#xff0c;则返回指定的默认值。 方法签名如下&#xff1a; V getOrDefault(Object key, V defaultValue) 其中&#xff0c;key 是要获取值的键&#xff0c;defaul…...

vue3移动端脚手架(纯净,集成丰富)

概述 一个纯净的移动端框架 &#xff0c;用到了 Vue3 vuex Vite3 Vant3 sass eslint stylelint htmlhint husky commitlint axios axios-adapter VConsole 自定义全局 loading &#xff0c;自定义函数式 dialog &#xff08;api模仿微信小程序&#xff09;&#x…...

HarmonyOS应用开发-手写板

这是一个基于HarmonyOS做的一个手写板应用&#xff0c;只需要简单的几十行代码&#xff0c;就可以实现如下手写功能以及清空画布功能。 一、先上效果图&#xff1a; 二、上代码 Entry Component struct Index {//手写路径State pathCommands: string ;build() {Column() {//…...

Python中的logging介绍

Python中的logging模块是一个强大的、灵活的、可配置的日志记录系统。它允许你在不修改源代码的情况下记录错误和调试信息&#xff0c;同时也可以对日志信息进行各种处理&#xff0c;例如写入到文件、输出到控制台、记录到数据库等。 logging模块提供了一种用于日志记录的通用接…...

ClickHouse(17)ClickHouse集成JDBC表引擎详细解析

JDBC 允许CH通过JDBC连接到外部数据库。 要实现JDBC连接&#xff0c;CH需要使用以后台进程运行的程序 clickhouse-jdbc-bridge。 该引擎支持Nullable数据类型。 建表 CREATE TABLE [IF NOT EXISTS] [db.]table_name (columns list... ) ENGINE JDBC(datasource_uri, exte…...

利用CRM系统分析客户行为:精细掌握市场动态

CRM客户关系管理软件在客户行为分析方面发挥着重要作用。通过CRM客户管理系统&#xff0c;企业可以更加便捷地统计客户的行为特征、消费习惯和消费需求&#xff0c;从而洞察市场趋势&#xff0c;帮助企业管理者精准制定营销策略。本文将通过购物篮分析的例子向您介绍CRM客户管理…...

15Linux、GIT及相关相似面试题、PostMan

Linux和git相似是命令相关的层次结构相似 Linux Linux Linux常用操作_linux操作-CSDN博客 程序员常用的10个Linux命令_简介linux系统中的10个常用命令及功能-CSDN博客 help help 命令 &#xff1a;获得 shell 内置命令的帮助信息&#xff0c;常用形式 help cd ls --help …...

游戏中小地图的制作__unity基础开发教程

小地图的制作 Icon标识制作制作摄像机映射创建地图UI效果“不一样的效果” 在游戏中经常可以看到地图视角的存在&#xff0c;那么地图视角是如何让实现的呢&#xff1f; 这一期教大家制作一个简易的小地图。 &#x1f496;点关注&#xff0c;不迷路。 老样子&#xff0c;我们还…...

​sqlite3 --- SQLite 数据库 DB-API 2.0 接口模块​

源代码&#xff1a; Lib/sqlite3/ SQLite 是一个C语言库&#xff0c;它可以提供一种轻量级的基于磁盘的数据库&#xff0c;这种数据库不需要独立的服务器进程&#xff0c;也允许需要使用一种非标准的 SQL 查询语言来访问它。一些应用程序可以使用 SQLite 作为内部数据存储。可…...

做数据分析为何要学统计学(0)——如果提高数据样本质量

样本是数据分析的关键&#xff0c;直接影响研究成果质量。如果样本质量不高&#xff0c;即使使用再好的分析方法&#xff0c;也无法得出理想的结论。所以数据学科圈里有句名言“数据比方法更重要”。所以如何提高数据样本的质量是保证研究成果质量的第一步&#xff0c;虽然这一…...

ubuntu18.04配置cuda+cudnn+tensorrt+anconda+pytorch-gpu+pycharm

一、显卡驱动安装 执行nvidia-smi查看安装情况 二、cuda安装 cuda官网下载cuda_11.6.2_510.47.03_linux.run&#xff0c;安装执行 sudo sh cuda_11.6.2_510.47.03_linux.run提升安装项&#xff0c;驱动不用安装&#xff0c;即第一项&#xff08;Driver&#xff09;&#xff…...

C++ 指针常量和常量指针的区别

指针常量 指针常量&#xff1a;顾名思义它就是一个常量&#xff0c;但是是指针修饰的。 格式为&#xff1a; int * const p //指针常量在这个例子下定义以下代码&#xff1a; int a&#xff0c;b&#xff1b; int * const p&a //指针常量 //那么分为一下两种操作 *p9;//操…...

如何截取Hive数组中的前N个元素?

文章目录 1、需求描述2、使用索引3、使用posexplode()4、转换为字符串操作 1、需求描述 需求&#xff1a;截取任意给定数组中的前N个元素&#xff0c;返回截取后的子数组 假设我们有如下三种类型的Hive数组&#xff1a; select array(1,2,3,4) -- [1,2,3,4] selec…...

iPaaS架构深入探讨

在数字化时代全面来临之际&#xff0c;企业正面临着前所未有的挑战与机遇。技术的迅猛发展与数字化转型正在彻底颠覆各行各业的格局&#xff0c;不断推动着企业迈向新的前程。然而&#xff0c;这一数字化时代亦衍生出一系列复杂而深奥的难题&#xff1a;各异系统之间数据孤岛、…...

UE4/UE5 修改/还原场景所有Actor的材质

使用蓝图方法&#xff1a; 1.修改场景所有Actor 材质&#xff1a; Wirframe&#xff1a;一个材质类 MatList&#xff1a;获取到的所有模型的全部材质 的列表 TempAllClass&#xff1a;场景中所有获取的 Actor 的列表 功能方法如下&#xff1a; 蓝图代码可复制在&#xff1a…...

Three.js + Vue 处理glb文件过大问题(DRACOLoader加载压缩glb)

起因&#xff0c;three.js editer导出的glb文件过于庞大&#xff0c;导致部署后文件加载过久 解决方法&#xff1a; 第一步&#xff08;得有个blender&#xff09;&#xff0c;压缩&#xff1a; 导出时把压缩勾选上 这时候我们会得到一个glb文件&#xff0c;但与three.js edite…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...