Lcss算法介绍与应用演示
Lcss算法介绍
LCSS(最长公共子序列,Longest Common Subsequence)算法是一种用于比较两个序列相似度的方法。它寻找两个序列中的最长子序列,这个子序列不需要在原始序列中连续,但必须保持原有序列中元素的相对顺序。LCSS算法在多种领域有着广泛的应用,比如文本比较、生物信息学和轨迹分析。
### LCSS算法的基本概念
1. **子序列**:如果序列Z中的所有元素都按其在序列X中出现的顺序出现在X中,那么Z是X的子序列。例如,Z = [a, b, c] 是 X = [a, d, b, c, e] 的子序列。
2. **最长公共子序列**:对于两个序列X和Y,它们的最长公共子序列是X和Y所有可能的公共子序列中最长的那一个。
### 算法特点
- **非连续性**:LCSS不要求子序列在原始序列中是连续的。
- **保持顺序**:子序列必须保持原序列中元素的相对顺序。
- **长度灵活**:LCSS的长度可以随序列中元素的增加而增加。
### 算法应用
- **文本相似度**:比较两段文本,找出它们的共同元素。
- **生物序列分析**:在DNA序列分析中,寻找共同的基因片段。
- **轨迹分析**:在地理信息系统(GIS)中,比较两个或多个轨迹的相似度。
### 算法实现
LCSS算法通常使用动态规划来实现。动态规划的方法是填充一个矩阵,其中每个元素代表考虑到目前为止的序列X和Y的最长公共子序列的长度。通过比较序列的每个元素,并考虑之前计算的结果,我们可以构建出整个矩阵。最后,矩阵的右下角元素就代表了两个序列的最长公共子序列的长度。
总之,LCSS算法是一种有效的比较两个序列相似度的方法,特别适用于元素顺序重要但不要求连续匹配的情况。
算法应用演示
public class TrajectoryComparison {
/**
* 根据LCSS算法比较两个轨迹。
*
* @param points1 第一个轨迹,表示为[x,y]坐标的数组。
* @param points2 第二个轨迹,与第一个类似。
* @param eps 考虑两点接近的阈值距离。
* @param similarRadiusFactor 用于确定相似点索引范围的因子。
* @return 表示两个轨迹相似度的双精度分数。
*/
public static double compare(double[][] points1, double[][] points2, double eps, double similarRadiusFactor) {
int rows = points1.length + 1;
int columns = points2.length + 1;
double[][] matrix = new double[rows][columns];
// 构建LCSS矩阵
for (int i = 1; i < rows; i++) {
for (int j = 1; j < columns; j++) {
double point1x = points1[i - 1][0];
double point1y = points1[i - 1][1];
double point2x = points2[j - 1][0];
double point2y = points2[j - 1][1];
// 检查点是否足够接近且在相似半径因子范围内
if (distanceBetween(point1x, point1y, point2x, point2y) < eps && Math.abs(i - j) < (Math.min(rows, columns) * similarRadiusFactor)) {
matrix[i][j] = matrix[i - 1][j - 1] + 1;
} else {
matrix[i][j] = Math.max(matrix[i][j - 1], matrix[i - 1][j]);
}
}
}
// 计算相似度分数
return 1 - matrix[rows - 1][columns - 1] / Math.min(rows - 1, columns - 1);
}
/**
* 计算两点之间的欧几里得距离。
*
* @param x1 第一个点的x坐标。
* @param y1 第一个点的y坐标。
* @param x2 第二个点的x坐标。
* @param y2 第二个点的y坐标。
* @return 两点之间的欧几里得距离。
*/
private static double distanceBetween(double x1, double y1, double x2, double y2) {
return Math.sqrt(Math.pow(x2 - x1, 2) + Math.pow(y2 - y1, 2));
}
public static void main(String[] args) {
// 示例测试用例
double[][] trajectory1 = {{0, 0}, {1, 1}, {2, 2}, {3, 3}};
double[][] trajectory2 = {{0, 0}, {1, 1}, {2, 2}, {4, 4}};
double eps = 1.0;
double similarRadiusFactor = 0.5;
double similarityScore = compare(trajectory1, trajectory2, eps, similarRadiusFactor);
System.out.println("相似度分数: " + similarityScore);
}
}
compare函数接受两个轨迹作为输入,并计算它们之间的相似度。distanceBetween`函数计算两点之间的欧几里得距离。最后,`main` 方法提供了一个示例测试用例,用于演示如何使用这个函数计算两个简单轨迹的相似度分数。可以根据实际需求调整 `eps` 和 `similarRadiusFactor` 参数的值。
相关文章:
Lcss算法介绍与应用演示
Lcss算法介绍 LCSS(最长公共子序列,Longest Common Subsequence)算法是一种用于比较两个序列相似度的方法。它寻找两个序列中的最长子序列,这个子序列不需要在原始序列中连续,但必须保持原有序列中元素的相对顺序。LC…...
【SpringBoot】从入门到精通的快速开发指南
🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《SpringBoot》。🎯🎯 &…...
每日一练【长度最小的子数组】
一、题目描述 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。 二、题目解析 经…...
HTML 块级元素与行内元素有哪些以及注意、总结
行内元素和块级元素是HTML中的两种元素类型,它们在页面中的显示方式和行为有所不同。 块级元素(Block-level Elements): 常见的块级元素有div、p、h1-h6、ul、ol、li、table、form等。 块级元素会独占一行,即使没有…...
SpringBoot热部署
SpringBoot热部署 借鉴链接🔗:SpringBoot中的热部署 添加devtools依赖和pom插件 <!-- devtools 依赖 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId&…...
Jmeter入门
一、下载jmeter 官网下载 下载之后解压,在目录/bin下面找到jmeter.bat双击之后即可启动Jmeter。 二、使用 如下左图,选择语言为中文,可以修改测试计划的名称。如下右图,添加线程组 添加线程组 添加http请求 路径传参方式 …...
go集成nacos
1,go集成nacos 注册实例与注销实例 package mainimport ("fmt""github.com/nacos-group/nacos-sdk-go/clients""github.com/nacos-group/nacos-sdk-go/clients/naming_client""github.com/nacos-group/nacos-sdk-go/common/constant"…...
NLP项目实战01--电影评论分类
介绍: 欢迎来到本篇文章!在这里,我们将探讨一个常见而重要的自然语言处理任务——文本分类。具体而言,我们将关注情感分析任务,即通过分析电影评论的情感来判断评论是正面的、负面的。 展示: 训练展示如下…...
Linux vmstat命令:监控系统资源
vmstat命令,是 Virtual Meomory Statistics(虚拟内存统计)的缩写,可用来监控 CPU 使用、进程状态、内存使用、虚拟内存使用、硬盘输入/输出状态等信息。此命令的基本格式有如下 2 种: [rootlocalhost ~]# vmstat [-a…...
php爬虫规则与robots.txt讲解
在进行网页爬虫时,有一些规则需要遵守,以避免违反法律,侵犯网站隐私和版权,以及造成不必要的麻烦。以下是一些常见的PHP爬虫规则: 1. 尊重网站的使用条款:在开始爬取之前,请确保你阅读并理解了…...
Ray使用备注
Ray使用备注 框架介绍 Ray是一种python分布式任务调度框架其支持 无状态的任务并发执行,也支持 有状态的任务按照一定顺序执行其支持 分布式调度器,在一个节点上创建的任务先给本节点的局部调度器,并让本节点自己处理,当资源不够时,再将任务发给全局调度器供其他节点处理其支…...
个人介绍以及毕业去向
CSDN陪伴我从大一到大四,后面也会接着用 写一点大学四年的总结 #总结#理工科#留学 211大学 弃保出国 智能科学与技术 均分88.9 EI论文一篇 数学竞赛和数学建模均为省二 大创评为国家级 全国大学生计算机设计大赛国家三等奖 百度Paddle、大疆RoboMaster、Phytium Te…...
原创度检测,在线文章原创度检测
原创度检测,作为数字时代中内容创作者和学术界广泛关注的话题,正逐渐成为保障知识产权、促进创新发展的不可或缺的工具。今天,我们将深入介绍原创度检测的定义、意义、技术原理、应用领域以及未来趋势。 一、什么是原创度检测? 原…...
windows下安装git中文版客户端
下载git Windows客户端 git客户端下载地址:Git - Downloads 我这里下载的是Git-2.14.0-64-bit.exe版本 下载TortoiseGit TortoiseGit客户端下载地址:Download – TortoiseGit – Windows Shell Interface to Git TortoiseGit客户端要下载两个&#…...
短视频怎么批量添加水印logo
在现代数字化时代,视频内容已经成为我们日常生活中不可或缺的一部分。然而,当我们辛辛苦苦制作的视频在网络上分享时,常常会遇到被他人盗用或未经授权使用的情况。为了保护我们的创作成果,给视频添加水印logo成为了一种常见的手段…...
一文入门 UUID
UUID简介 UUID代表Universally Unique Identifier,译为全局一标识符。它是一种由软件构建的标准化身份验证方案,用于确保跨多个上下文中的对象都具有唯一性。UUID在各种系统之间确保了严格的唯一性,因此即使在大型分布式环境中,也…...
kafka学习笔记--broker工作流程、重要参数
本文内容来自尚硅谷B站公开教学视频,仅做个人总结、学习、复习使用,任何对此文章的引用,应当说明源出处为尚硅谷,不得用于商业用途。 如有侵权、联系速删 视频教程链接:【尚硅谷】Kafka3.x教程(从入门到调优…...
多合一iPhone 解锁工具:iMyFone LockWiper iOS
多合一iPhone 解锁工具 无需密码解锁 iPhone/iPad/iPod touch 上所有类型的屏幕锁定 在几分钟内解锁 iPhone Apple ID、Touch ID 和 Face ID 立即绕过 MDM 并删除 iPhone/iPad/iPod touch 上的 MDM 配置文件 支持所有 iOS 版本和设备,包括最新的 iOS 17 和 iPhone 1…...
在设计和考虑建造室外雨水收集池时需要注意的因素
在设计和建造室外雨水收集池时,需要考虑以下因素: 地质条件:建造雨水收集池需要考虑到地质条件,例如土壤类型、地基承载能力等。这些因素可能对水池的建造和结构产生影响。 气候条件:不同地区的降雨量、湿度、气温等…...
C_5练习题答案
一、单项选择题(本大题共20小题,每小题2分,共40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 下列叙述中错误的是(D)。A.计算机不能直接执行用C语言编写的源程序 B.C程序经C编译程序编译后,生成扩展名为obj的文件是一个二…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
