当前位置: 首页 > news >正文

机器学习-SVM(支持向量机)

推荐课程:【机器学习实战】第5期 支持向量机 |数据分析|机器学习|算法|菊安酱_哔哩哔哩_bilibili

赞美菊神ヾ ( ゜ⅴ゜)ノ 

一、什么是支持向量机?

支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。

  

1.1 举个例子 

在桌子上似乎有规律地放了两种颜色的球,要求你用一根棍子分离开他们,并且尽量再放更多的球之后,仍然适用。

  

SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙(这被认为是最佳求解)。 

  

并且,现在即使再放入更多的球,棍子仍然是一个很好的分界线。

  

但是,现在增加难度,如果将球散乱地放在桌子上,又该怎样进行划分呢?很明显,此时在二维平面中,这变成了一个线性不可分的问题,我们没有方法再用一根棍子将这些球分开了,那么怎么解决这样一个问题呢?

  

解决方法也很简单,我们可以使用一个核函数,将二维平面中的 '小球' 投影到三维空间,也许就可以三维空间中,有可能找到这样一个平面将其分隔开来(可以想象一下,用力拍向桌子,然后桌子上的球就被震到空中,瞬间抓起一张纸,插到两种球的中间。)

(话说,如果3维空间依旧找不到这样一个平面呢?没关系,我继续投四维呀╮(๑•́ ₃•̀๑)╭,总能找到一个维度解决线性不可分的问题。)

可以通过视频,更为直观地感受一下这个过程:支持向量机 SVM在线性不可分情况下进行分类 可视化直观展示 高维空间映射_哔哩哔哩_bilibili

  

而在二维平面的角度看这些球,这些球像是被一条曲线分开了。

更为规范的,我们把这些球叫做「data」,把棍子叫做「classififier」, 最大间隙 trick 叫做「optimization」,拍桌子叫做「kernelling」, 那张纸叫做「hyperplane」。

    

1.2 概述一下

当一个分类问题,数据是线性可分(linearly separable)的,也就是用一根棍就可以将两种小球分开的时候,我们只要将棍的位置放在让小球距离棍的距离最大化的位置即可,寻找这个最大间隔的过程,就叫做最优化。但是,一般的数据是线性不可分的,也就是找不到一个棍将两种小球很好的类。这个时候,我们就需要使用核函数 (kernel)将小球投影到多维空间(想象一下,将小球拍飞到空中,瞬间抓起一张纸,插到两种球的中间),而在多维空间中切分小球的平面,就是超平面(hyperplane)。如果数据集是N维的,那么超平面就是N-1维的

Q:什么是支持向量?

A:把一个数据集正确分开的超平面可能有多个,而那个具有“最大间隔”的超平面就是SVM要寻找的最优解。而这个真正的最优解对应的两侧虚线所穿过的样本点,就是SVM中的支持样本点,称为“支持向量(support vector)”。支持向量到超平面的距离被称为间隔(margin)。 

    

二、线性支持向量机

一个最优化问题通常有两个最基本的因素:

1)目标函数,也就是你希望什么东西的什么指标达到最好;

2)优化对象,你期望通过改变哪些因素来使你的目标函数达到最优。

在线性SVM算法中,目标函数显然就是那个“间隔”,而优化对象则是超平面

  

2.1 超平面方程

在线性可分的二分类问题中,超平面其实就是一条直线,公式如下:

原来的x轴看作x1轴,y轴看作x2轴,于是公式(1)转换为:

向量形式可以写成:

进一步可表示为:

其中,,b为截距。

   

2.2 间隔的计算公式 

间隔的计算公式 = 点到直线距离推导公式,向量表示法

其中,\left \| \omega \right \|是向量 \omega 的模,假如 ,则 ,表示在空间中向量的长度。

我们评价分类器的好坏依据是分类间隔的的大小,即分类间隔W越大,我们认为这个超平面的分类效果越好。而追求分类间隔W的最大化也就是寻找 d的最大化。 

   

2.3 约束条件

对于SVM的线性可分的二分类问题,我们希望:

1)超平面够将所有的样本点都正确分类。
2)超平面的位置应该是在间隔区域的中轴线上。
3)对于一个给定的超平面,我们能找到对应的支持向量,来计算距离d。 

对于上述的三个约束条件,我们假设在平面空间中有红蓝两种点,对其分别标记为:

  • 红色为正样本,标记为+1;
  • 蓝色为负样本,标记为-1。

对每个样本点 x_i加上类别标签 y_i,则有

如果我们的超平面能够完全将红蓝两种样本点分离开(对应第一个约束条件),那么则有

如果要求在再高一点,假设超平面正好处于间隔区域的中轴线上(对应第二个约束条件),并且相应支持向量到超平面的距离为d(对应第三个约束条件),则公式可进一步写为:

对公式两边同时除以d,可得:

其中,

简化方程,使用 \omega和 d代替 \frac{\omega^T _d}{\left \| \omega _d \right \|}\frac{b_d}{\left \| \omega _d \right \|},可得:

等于 1或 -1时,对应的 x_i坐标就是支持向量的坐标。

以将上述方程糅合成一个约束方程:

这个方程就是SVM最优化问题的约束条件。

  

2.4 线性SVM最优化问题

等于 1或 -1时,对应的 x_i坐标就是支持向量的坐标,相应的根据约束条件,我们可以知道只有超平面最大化时, 才会等于 1或 -1。无论是等于1还是-1,即 x_i 为支持向量坐标时,对于公式10来说,都有

所以对于支持向量来说:

我们原来的任务是找到一组参数 \omega,b使得分类间隔 W=2d最大化,根据公式12 就可以转变为 \left \| \omega \right \|的最小化问题,也等效于 \frac{1}{2}\left \| \omega \right \|^2的最小化问题。我们之所以要在 \left \| \omega \right \|上加上平方和1/2的系数,是为了以后进行最优化的过程中对目标函数求导时比较方便,但这绝不影响最优化问题最后的解。 

  

所以,线性SVM最优化问题的数学描述就是:

公式13,描述的是一个典型的不等式约束条件下的二次型函数优化问题,同时也是支持向量机的基本数学模型。

    

2.5 求解线性SVM最优化问题

有不等式约束条件的原始目标函数求解十分困难,我们需要先转化没有约束条件的新目标函数,再进行求导优化,简单来讲过程就是:构造拉格朗日函数 + 求解拉格朗日对偶函数。 

最终得到新的目标函数和约束条件,方便使用高效优化算法SMO算法:

   

三、SMO算法 

SMO算法就是序列最小优化(Sequential Minimal Optimization),它是由 John Platt 于1996年发布的专门用于训练SVM的一个强大算法(如同,梯度下降算法专门用于训练深度学习模型一般)。

简化版SMO算法,如下:

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):"""smoSimpleArgs:dataMatIn    数据集classLabels  类别标签C   松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。可以通过调节该参数达到不同的结果。toler   容错率(是指在某个体系中能减小一些因素或选择对某个系统产生不稳定的概率。)maxIter 退出前最大的循环次数Returns:b       模型的常量值alphas  拉格朗日乘子"""dataMatrix = mat(dataMatIn)# 矩阵转置 和 .T 一样的功能labelMat = mat(classLabels).transpose()m, n = shape(dataMatrix)# 初始化 b和alphas(alpha有点类似权重值。)b = 0alphas = mat(zeros((m, 1)))# 没有任何alpha改变的情况下遍历数据的次数iter = 0while (iter < maxIter):# w = calcWs(alphas, dataMatIn, classLabels)# print("w:", w)# 记录alpha是否已经进行优化,每次循环时设为0,然后再对整个集合顺序遍历alphaPairsChanged = 0for i in range(m):# print 'alphas=', alphas# print 'labelMat=', labelMat# print 'multiply(alphas, labelMat)=', multiply(alphas, labelMat)# 我们预测的类别 y = w^Tx[i]+b; 其中因为 w = Σ(1~n) a[n]*lable[n]*x[n]fXi = float(multiply(alphas, labelMat).T*(dataMatrix*dataMatrix[i, :].T)) + b# 预测结果与真实结果比对,计算误差EiEi = fXi - float(labelMat[i])# 约束条件 (KKT条件是解决最优化问题的时用到的一种方法。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值)# 0<=alphas[i]<=C,但由于0和C是边界值,我们无法进行优化,因为需要增加一个alphas和降低一个alphas。# 表示发生错误的概率:labelMat[i]*Ei 如果超出了 toler, 才需要优化。至于正负号,我们考虑绝对值就对了。'''# 检验训练样本(xi, yi)是否满足KKT条件yi*f(i) >= 1 and alpha = 0 (outside the boundary)yi*f(i) == 1 and 0<alpha< C (on the boundary)yi*f(i) <= 1 and alpha = C (between the boundary)'''if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):# 如果满足优化的条件,我们就随机选取非i的一个点,进行优化比较j = selectJrand(i, m)# 预测j的结果fXj = float(multiply(alphas, labelMat).T*(dataMatrix*dataMatrix[j, :].T)) + bEj = fXj - float(labelMat[j])alphaIold = alphas[i].copy()alphaJold = alphas[j].copy()# L和H用于将alphas[j]调整到0-C之间。如果L==H,就不做任何改变,直接执行continue语句# labelMat[i] != labelMat[j] 表示异侧,就相减,否则是同侧,就相加。if (labelMat[i] != labelMat[j]):L = max(0, alphas[j] - alphas[i])H = min(C, C + alphas[j] - alphas[i])else:L = max(0, alphas[j] + alphas[i] - C)H = min(C, alphas[j] + alphas[i])# 如果相同,就没发优化了if L == H:print("L==H")continue# eta是alphas[j]的最优修改量,如果eta==0,需要退出for循环的当前迭代过程# 参考《统计学习方法》李航-P125~P128<序列最小最优化算法>eta = 2.0 * dataMatrix[i, :]*dataMatrix[j, :].T - dataMatrix[i, :]*dataMatrix[i, :].T - dataMatrix[j, :]*dataMatrix[j, :].Tif eta >= 0:print("eta>=0")continue# 计算出一个新的alphas[j]值alphas[j] -= labelMat[j]*(Ei - Ej)/eta# 并使用辅助函数,以及L和H对其进行调整alphas[j] = clipAlpha(alphas[j], H, L)# 检查alpha[j]是否只是轻微的改变,如果是的话,就退出for循环。if (abs(alphas[j] - alphaJold) < 0.00001):print("j not moving enough")continue# 然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小一样,但是改变的方向正好相反alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])# 在对alpha[i], alpha[j] 进行优化之后,给这两个alpha值设置一个常数b。# w= Σ[1~n] ai*yi*xi => b = yj- Σ[1~n] ai*yi(xi*xj)# 所以:  b1 - b = (y1-y) - Σ[1~n] yi*(a1-a)*(xi*x1)# 为什么减2遍? 因为是 减去Σ[1~n],正好2个变量i和j,所以减2遍b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i, :]*dataMatrix[i, :].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i, :]*dataMatrix[j, :].Tb2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i, :]*dataMatrix[j, :].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j, :]*dataMatrix[j, :].Tif (0 < alphas[i]) and (C > alphas[i]):b = b1elif (0 < alphas[j]) and (C > alphas[j]):b = b2else:b = (b1 + b2)/2.0alphaPairsChanged += 1print("iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))# 在for循环外,检查alpha值是否做了更新,如果在更新则将iter设为0后继续运行程序# 知道更新完毕后,iter次循环无变化,才推出循环。if (alphaPairsChanged == 0):iter += 1else:iter = 0print("iteration number: %d" % iter)return b, alphas

查看代码运行时间及结果: 

# 惩罚因子C = 0.6
# 容错率toler = 0.001
# 退出前最大循环次数maxIter=40
%time b, alphas = smoSimple(dataArr, labelArr, 0.6, 0.001, 40)

相关文章:

机器学习-SVM(支持向量机)

推荐课程&#xff1a;【机器学习实战】第5期 支持向量机 |数据分析|机器学习|算法|菊安酱_哔哩哔哩_bilibili 赞美菊神ヾ ( ゜ⅴ゜)&#xff89; 一、什么是支持向量机&#xff1f; 支持向量机&#xff08;Support Vector Machine, SVM&#xff09;是一类按监督学习&#xff0…...

保姆级:Windows Server 2012上安装.NET Framework 3.5

&#x1f4da;&#x1f4da; &#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; ​​ &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Windows》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有…...

昇腾910安装驱动出错,降低Centos7.6的内核版本

零、问题描述&#xff1a; 在安装Atlas800-9000服务器的驱动的时候&#xff0c;可能会出现错误&#xff1a;Dkms install failed, details in : /var/log/ascend_seclog/ascend_install.log 如下所示&#xff1a; [rootlocalhost ~]# ./Ascend-hdk-910-npu-driver_23.0.rc3_l…...

LeetCode刷题日志-73矩阵置零

思路一&#xff1a; 用一个同样大小的矩阵记录0的位置&#xff0c;然后遍历矩阵置0&#xff0c; 空间复杂度为O&#xff08;mn&#xff09; class Solution {public void setZeroes(int[][] matrix) {int [][] matrix_new new int[matrix.length][matrix[0].length];for(int …...

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(四)

目录 前言引言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 模型构建3. 模型训练及保存4. 模型生成 系统测试1. 训练准确率2. 测试效果 相关其它博客工程源代码下载其它资料下载 前言 博主前段时间发布了一篇有关方言识别和分类模型训练的博客&#xff…...

文件操作及函数

什么是文件&#xff1f; 在程序设计中&#xff0c;文件有两种&#xff1a;程序文件和数据文件。 程序文件 包括源程序文件&#xff08;.c&#xff09;&#xff0c;目标文件&#xff08;.obj&#xff09;&#xff0c;可执行程序(.exe)。 数据文件 文件的内容不一定是程序&…...

阿里云国际版无法远程连接Windows服务器的排查方法

如果您遇到紧急情况&#xff0c;需要尽快登录Windows实例&#xff0c;请参见以下操作步骤&#xff0c;先检查ECS实例的状态&#xff0c;然后通过云助手向Windows实例发送命令或通过VNC登录实例&#xff0c;具体步骤如下&#xff1a; 步骤一&#xff1a;检查ECS实例状态 无论何…...

华清远见嵌入式学习——QT——作业4

作业要求&#xff1a; 代码运行效果图&#xff1a; 代码&#xff1a; 头文件&#xff1a; #ifndef ALARMCLOCK_H #define ALARMCLOCK_H#include <QWidget> #include <QTimerEvent> #include <QTimer> #include <QTime> #include <QTextToSpeech&g…...

Visuial Studio 打开 Unity 脚本时,脚本继承MonoBehaviour暂时失效为白色的解决方法

问题描述&#xff1a; u3d2020.3.47f1c1 vs2019 之前C#脚本A好好的&#xff0c;今天改了一行代码&#xff0c;在储存&#xff0c;就出现这个问题了&#xff0c;变白之后&#xff0c;新增的一行代码不生效&#xff0c;之前的代码照常运行。 如下办法都不能解决我的问题&…...

CentOS使用kkFileView实现在线预览word excel pdf等

一、环境安装 1、安装LibreOffice wget https://downloadarchive.documentfoundation.org/libreoffice/old/7.5.3.2/rpm/x86_64/LibreOffice_7.5.3.2_Linux_x86-64_rpm.tar.gz # 解压缩 tar -zxf LibreOffice_7.5.3.2_Linux_x86-64_rpm.tar cd LibreOffice_7.5.3.2_Linux_x86…...

黑豹程序员-EasyExcel实现导出

需求 将业务数据导出到excel中&#xff0c;老牌的可以选择POI&#xff0c;也有个新的选择EasyExcel。 有个小坑&#xff0c;客户要求样式比较美观&#xff0c;数字列要求千位符&#xff0c;保留2位小数。 可以用代码实现但非常繁琐&#xff0c;用模板就特别方便&#xff0c;模…...

【项目小结】优点分析

一、 个人博客系统 一&#xff09;限制强制登录 问题&#xff1a;限制用户登录后才能进行相关操作解决&#xff1a; 1&#xff09;前端&#xff1a; ① 写一个函数用于判断登录状态&#xff0c;如果返回的状态码是200就不进行任何操作&#xff0c;否则Ajax实现页面的跳转操作…...

已经写完的论文怎么降低查重率 papergpt

大家好&#xff0c;今天来聊聊已经写完的论文怎么降低查重率&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff1a; 已经写完的论文怎么降低查重率 背景介绍 在学术界&#xff0c;论文的查重率是评价论文质量的…...

科研论文中PPT图片格式选择与转换:EPS、SVG 和 PDF 的比较

当涉及论文中的图片格式时&#xff0c;导师可能要求使用 EPS 格式的图片。EPS&#xff08;Encapsulated PostScript&#xff09;是一种矢量图格式&#xff0c;它以 PostScript 语言描述图像&#xff0c;能够无损地缩放并保持图像清晰度。与像素图像格式&#xff08;如 PNG 和 J…...

mybatis xml 热部署

平时我们在项目中多多少少会根据不同的情况等等原因去调试sql&#xff0c;在数据库测试完后也需要在代码里面运行测试&#xff0c;但是每次修改就需要重启服务就显得太繁琐&#xff0c;所以如果mybatis的xml也可以热部署当然是最好的了&#xff0c;那我来试试如何可以将mybatis…...

MySQL的事务以及springboot中如何使用事务

事务的四大特性&#xff1a; 概念&#xff1a; 事务 是一组操作的集合&#xff0c;它是不可分割的工作单元。事务会把所有操作作为一个整体&#xff0c;一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 注意&#xff1a; 默认MySQ…...

docker二 redis单机安装

创建文件夹 mkdir -p /usr/local/redis/data /usr/local/redis/logs /usr/local/redis/conf chmod -R 777 /usr/local/redis/data* chmod -R 777 /usr/local/redis/logs*另一种风格 # 创建 redis 配置存放目录 mkdir -p /home/docker/redis/conf && chmod 777 /home/…...

【解决】Vue elementUI table表格 列错位/滑动后切换每页显示数后错位/表格使用fixed后错位...

table表格右侧列固定后&#xff0c;在切换页面之后&#xff0c;就会出现列错误的现象 <el-tablev-adaptive"{ bottomOffset: 85 }"height"100px"v-loading"loading":data"dataList"> 解决方法 方法一 1、给表格添加ref &…...

uniapp实战 —— 分类导航【详解】

效果预览 组件封装 src\pages\index\components\CategoryPanel.vue <script setup lang"ts"> import type { CategoryItem } from /types/index defineProps<{list: CategoryItem[] }>() </script><template><view class"category&…...

LangChain学习二:提示-实战(下半部分)

文章目录 上一节内容&#xff1a;LangChain学习二&#xff1a;提示-实战&#xff08;上半部分&#xff09;学习目标&#xff1a;提示词中的示例选择器和输出解释器学习内容一&#xff1a;示例选择器1.1 LangChain自定义示例选择器1.2 实现自定义示例选择器1.2.1实战&#xff1a…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...