当前位置: 首页 > news >正文

在OpenCV基于深度学习的超分辨率模型实践

1. 引言

OpenCV是一个开源的计算机视觉库,拥有大量优秀的算法。基于最新的合并,OpenCV包含一个易于使用的接口,主要用于实现基于深度学习方法的超分辨率(SR)。该接口包含预先训练的模型,这些模型可以非常容易和有效地用于推理。在这篇文章中,我将解释它可以做什么,并逐步展示如何使用它。

闲话少说,我们直接开始吧!

2. 版本说明

首先我们的第一步是安装OpenCV库。一些功能都是在逐渐发布,所以需要注意版本:4.2.0用于C++,4.3.0添加Python接口,4.4.0添加GPU推理。大家可以按照OpenCV文档中的说明进行相应的操作。大家注意安装contrib模块,因为这是SR接口代码所在的位置。本文中我们将使用的接口或模块称为dnn_superres(dnn代表深度神经网络;superres代表超分辨率)。

3. 模型下载

接着我们需要单独下载预先训练好的模型,因为OpenCV代码库不包含它们。原因是有些模型相当大。这里有几种模型可供选择,所有这些模型都是流行SR论文中的实现。现在,让我们选择一个小模型,大家可以在这里下载。

4. 实践

我们在Python中可以通过以下代码进行相应的实现:


import cv2
from cv2 import dnn_superres# Create an SR object
sr = dnn_superres.DnnSuperResImpl_create()# Read image
image = cv2.imread('./input.png')# Read the desired model
path = "EDSR_x3.pb"
sr.readModel(path)# Set the desired model and scale to get correct pre- and post-processing
sr.setModel("edsr", 3)# Upscale the image
result = sr.upsample(image)# Save the image
cv2.imwrite("./upscaled.png", result)

代码相对简单,参考相应的注释即可。

5. 推荐模型

目前在OpenCV中主要支持4种不同的SR模型。它们都可以按2、3和4的比例放大图像。LapSRN甚至可以升级8倍。它们在准确性、大小和速度上各不相同。

  • EDSR: 这是目前表现最好的模型。然而,它也是参数量最大的模型,因此具有最大的文件大小和最慢的推理。大家可以在这里下载。

  • ESPCN: 这是一个相对较小的模型,具有快速和良好的推理能力。它可以进行实时视频放大(取决于图像大小)。大家可以在这里下载。

  • FSRCNN: 这也是一个具有快速准确推理的小模型。还可以进行实时视频放大。大家可以在这里下载。

  • LapSRN: 这是一款中等大小的模型,可以提升8倍分辨率。大家可以在这里下载。

有关这些模型的更多信息和实现,请参阅模块的GitHub中的ReadME文件。关于上述模型的基准和比较,请访问此处。

6. 具体实例

接着让我们看具体实例如下:(如果在移动设备上查看,建议放大后进行直观的对比)

输入图像如下:
在这里插入图片描述
双线性插值放大三倍后的图像如下:
在这里插入图片描述
使用模型FSRCNN放大三倍后的效果如下:
在这里插入图片描述
使用模型ESDR放大三倍后的效果如下:
在这里插入图片描述
正如大家所看到的,这些模型产生了令人非常满意的结果,特别是EDSR给出了惊人的结果,尽管它有点慢(几秒钟的推理时间),但是绝对值得等待。大家可以自己试试!

7. 注意事项

事实上,在上述具体实现中,有以下几点注意事项:

  • 如果在使用.jpg图像时出现错误,请尝试切换到.png格式

  • 确保大家的setModel()中的参数与大家在readModel()中使用的模型匹配。

  • 尝试不同的模型,在速度和性能方面获得不同的结果。

  • 如果大家想使用GPU进行推理(默认是CPU),大家可以在读入模型后将后端设置为CUDA。这是一个新的特性,因此大家需要4.4.0版本。请参阅相关的拉取请求。部门代码参考如下:

path = "EDSR_x3.pb"
sr.readModel(path)# Set CUDA backend and target to enable GPU inference
sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

8. 总结

本文重点介绍了在OpenCV中,利用深度学习的方法来进行超分辨率的实现,被给出了具体的代码实例,和几种常用的模型。

您学废了吗?

相关文章:

在OpenCV基于深度学习的超分辨率模型实践

1. 引言 OpenCV是一个开源的计算机视觉库,拥有大量优秀的算法。基于最新的合并,OpenCV包含一个易于使用的接口,主要用于实现基于深度学习方法的超分辨率(SR)。该接口包含预先训练的模型,这些模型可以非常容…...

beebox靶场A3 中等级别 xss通关教程

特别注意,低级和中级的差别在于中级使用了一些函数进行了过滤或转义字符 例如 addslashes() 函数返回在预定义字符之前添加反斜杠的字符串。 预定义字符是: 单引号()双引号(")反斜杠(\&…...

前端知识笔记(二)———Django与Ajax

特点: 异步提交 局部刷新 例子:github注册 动态获取用户名实时的跟后端确认并实时的展示到前端(局部刷新) 朝后端发送请求的方式 1.浏览器地址栏直接输入url回车 -----》get请求 2.a标签的href属性 -----》get请求 3…...

C++新经典模板与泛型编程:用成员函数重载实现is_base_of

用成员函数重载实现is_base_of std::is_base_of是一个C 11标准中用于判断某个类是否是另一个类父类的类模板。 #include "killCmake.h"#include<string>using namespace std;class A { };class B : public A { public:B(int x): x_(x){} private:int x_; };/…...

【vue3】处理数组方法,在数组中获取指定条件所在的数组对象等持续更新笔记~~

1、在数组中获取指定条件所在的数组对象 &#xff08;1&#xff09;filter方法获取到的是包含指定项的数组 data.checkRow res.result.filter(item > item.checked 1);打印&#xff1a; &#xff08;2&#xff09;map方法取到的是包含指定项的数组&#xff0c;如果满足…...

digit函数

题目描述 在程序中定义一函数 digit(n,k)&#xff0c;它能分离出整数 n 从右边数第 k 个数字。 输入格式 正整数 n 和 k。 输出格式 一个数字。 输入输出样例 输入 #1 31859 3 输出 #1 8 说明/提示 n≤10^9。 k≤10。 因为用整数n来做有点难&#xff0c;所以我用…...

Linux中的堡垒机搭建以及使用

JumpServer搭建 安装应用包 curl -sSL https://resource.fit2cloud.com/jumpserver/jumpserver/releases/latest/download/quick_start.sh | bash 一路回车即可安装完毕&#xff08;可根据需求更改&#xff09; JumpServer的 配置文件路径 /opt/jumpserver/config/config.tx…...

ubuntu安装微信客户端

安装 Wine 环境 Wine环境包下载地址&#xff1a;http://archive.ubuntukylin.com/software/pool/partner/ukylin-wine_70.6.3.25_amd64.deb 下载完安装包后在命令行运行以下命令安装环境&#xff1a; sudo apt-get install -f -y ./ukylin-wine_70.6.3.25_amd64.deb 安装微信…...

ajax清空所有表单内容,包括input标签、单选框radio、多选框CheckBox、下拉框select以及文本域内容

为了实现重置并清空表单内容&#xff0c;你可以使用 jQuery 的 val 方法将各种表单元素的值设置为空字符串&#xff0c;并通过 layui 的 form.render 方法来更新表单的渲染。以下是修改后的代码&#xff1a; layui.use(["form", "laydate", "jquery&…...

通配符用法

在本篇文章中&#xff0c;本文将说明通配符用法。 &#xff08;1&#xff09;概述 通配符是在Linux命令中用于匹配文件名的特殊字符。它们可以帮助我们快速定位和操作文件。本文将介绍一些常用的通配符及其示例用法。 通配符是一种用于模式匹配的特殊字符。在计算机领域中&am…...

如何从eureka-server上进行服务发现,负载均衡远程调用服务

在spring cloud的maven的pom文件中添加eureka-client的依赖坐标 <!--eureka-client依赖--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-client</artifactId></dependen…...

Flutter实现Android拖动到垃圾桶删除效果-Draggable和DragTarget的详细讲解

文章目录 Draggable介绍构造函数参数说明使用示例 DragTarget 介绍构造函数参数说明使用示例 DragTarget 如何接收Draggable传递过来的数据&#xff1f; Draggable介绍 Draggable是Flutter框架中的一个小部件&#xff0c;用于支持用户通过手势拖动一个子部件。它是基于手势的一…...

Nacos和Eureka冲突问题原因分析

目录 一、问题现象二、解决办法三、原因分析 一、问题现象 Description:Field autoServiceRegistration in org.springframework.cloud.client.serviceregistry.AutoServiceRegistrationAutoConfiguration required a single bean, but 2 were found:- eurekaAutoServiceRegis…...

『C++成长记』拷贝构造函数

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;C &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、拷贝构造函数 &#x1f4d2;1.1拷贝构造函数的概念 &#x1f4d2;1.2拷贝构造…...

B 站基于 StarRocks 构建大数据元仓

作者&#xff1a;bilibili 大数据高级开发工程师 杨洋 B站大数据元仓是一款用来观测大数据引擎运行情况、推动大作业治理的系统诊断产品。经过调研和性能测试&#xff0c;大数据元仓最终以 StarRocks 为技术底座&#xff0c;从实际的应用效果来看&#xff0c;大部分查询都能在几…...

最常用的4种光纤接口结构

光纤接口&#xff0c;全名是光纤活动连接器。光纤连接器就是用于光纤与光纤之间进行可拆卸连接的器件&#xff0c;它是把光纤的两个端面精密的对接起来&#xff0c;使光能量前后达到最大程度的耦合。 光纤连接器属于高精密的器件&#xff0c;最常见结构形式可分包括&#xff1a…...

Axure网页端高交互组件库, 下拉菜单文件上传穿梭框日期城市选择器

作品说明 组件数量&#xff1a;共 11 套 兼容软件&#xff1a;Axure RP 9/10&#xff0c;不支持低版本 应用领域&#xff1a;web端原型设计、桌面端原型设计 作品特色 本作品为「web端组件库」&#xff0c;高保真高交互 (带仿真功能效果)&#xff1b;运用了动态面板、中继…...

基于Java新人入职管理系统

基于Java新人入职管理系统 功能需求 1、个人信息管理&#xff1a;系统需要提供个人信息管理功能&#xff0c;包括新人的基本信息、联系方式、教育背景、工作经历等。 2、入职流程管理&#xff1a;系统需要提供入职流程管理功能&#xff0c;包括入职手续的办理、合同签订、入…...

Python实战 | 如何抓取腾讯视频

嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 爬虫: 作用: 批量采集数据 / 模拟用户行为 原理: 模拟成 客户端 向 服务器 发送网络请求 环境介绍: python 3.8 解释器 pycharm 编辑器 第三方模块: reques…...

总结MySQL 的一些知识点:MySQL 导出数据

MySQL 导出数据 MySQL中你可以使用SELECT...INTO OUTFILE语句来简单的导出数据到文本文件上。 使用 SELECT ... INTO OUTFILE 语句导出数据 以下实例中我们将数据表 kxdang_tbl 数据导出到 /tmp/kxdang.txt 文件中: mysql> SELECT * FROM kxdang_tbl -> INTO OUTFILE /…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...