在OpenCV基于深度学习的超分辨率模型实践
1. 引言
OpenCV是一个开源的计算机视觉库,拥有大量优秀的算法。基于最新的合并,OpenCV包含一个易于使用的接口,主要用于实现基于深度学习方法的超分辨率(SR)。该接口包含预先训练的模型,这些模型可以非常容易和有效地用于推理。在这篇文章中,我将解释它可以做什么,并逐步展示如何使用它。
闲话少说,我们直接开始吧!
2. 版本说明
首先我们的第一步是安装OpenCV库。一些功能都是在逐渐发布,所以需要注意版本:4.2.0用于C++,4.3.0添加Python接口,4.4.0添加GPU推理。大家可以按照OpenCV文档中的说明进行相应的操作。大家注意安装contrib模块,因为这是SR接口代码所在的位置。本文中我们将使用的接口或模块称为dnn_superres(dnn代表深度神经网络;superres代表超分辨率)。
3. 模型下载
接着我们需要单独下载预先训练好的模型,因为OpenCV代码库不包含它们。原因是有些模型相当大。这里有几种模型可供选择,所有这些模型都是流行SR论文中的实现。现在,让我们选择一个小模型,大家可以在这里下载。
4. 实践
我们在Python中可以通过以下代码进行相应的实现:
import cv2
from cv2 import dnn_superres# Create an SR object
sr = dnn_superres.DnnSuperResImpl_create()# Read image
image = cv2.imread('./input.png')# Read the desired model
path = "EDSR_x3.pb"
sr.readModel(path)# Set the desired model and scale to get correct pre- and post-processing
sr.setModel("edsr", 3)# Upscale the image
result = sr.upsample(image)# Save the image
cv2.imwrite("./upscaled.png", result)
代码相对简单,参考相应的注释即可。
5. 推荐模型
目前在OpenCV中主要支持4种不同的SR模型。它们都可以按2、3和4的比例放大图像。LapSRN甚至可以升级8倍。它们在准确性、大小和速度上各不相同。
-
EDSR: 这是目前表现最好的模型。然而,它也是参数量最大的模型,因此具有最大的文件大小和最慢的推理。大家可以在这里下载。
-
ESPCN: 这是一个相对较小的模型,具有快速和良好的推理能力。它可以进行实时视频放大(取决于图像大小)。大家可以在这里下载。
-
FSRCNN: 这也是一个具有快速准确推理的小模型。还可以进行实时视频放大。大家可以在这里下载。
-
LapSRN: 这是一款中等大小的模型,可以提升8倍分辨率。大家可以在这里下载。
有关这些模型的更多信息和实现,请参阅模块的GitHub中的ReadME文件。关于上述模型的基准和比较,请访问此处。
6. 具体实例
接着让我们看具体实例如下:(如果在移动设备上查看,建议放大后进行直观的对比)
输入图像如下:

双线性插值放大三倍后的图像如下:

使用模型FSRCNN放大三倍后的效果如下:

使用模型ESDR放大三倍后的效果如下:

正如大家所看到的,这些模型产生了令人非常满意的结果,特别是EDSR给出了惊人的结果,尽管它有点慢(几秒钟的推理时间),但是绝对值得等待。大家可以自己试试!
7. 注意事项
事实上,在上述具体实现中,有以下几点注意事项:
-
如果在使用
.jpg图像时出现错误,请尝试切换到.png格式。 -
确保大家的
setModel()中的参数与大家在readModel()中使用的模型匹配。 -
尝试不同的模型,在速度和性能方面获得不同的结果。
-
如果大家想使用GPU进行推理(默认是CPU),大家可以在读入模型后将后端设置为CUDA。这是一个新的特性,因此大家需要4.4.0版本。请参阅相关的拉取请求。部门代码参考如下:
path = "EDSR_x3.pb"
sr.readModel(path)# Set CUDA backend and target to enable GPU inference
sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
8. 总结
本文重点介绍了在OpenCV中,利用深度学习的方法来进行超分辨率的实现,被给出了具体的代码实例,和几种常用的模型。
您学废了吗?
相关文章:
在OpenCV基于深度学习的超分辨率模型实践
1. 引言 OpenCV是一个开源的计算机视觉库,拥有大量优秀的算法。基于最新的合并,OpenCV包含一个易于使用的接口,主要用于实现基于深度学习方法的超分辨率(SR)。该接口包含预先训练的模型,这些模型可以非常容…...
beebox靶场A3 中等级别 xss通关教程
特别注意,低级和中级的差别在于中级使用了一些函数进行了过滤或转义字符 例如 addslashes() 函数返回在预定义字符之前添加反斜杠的字符串。 预定义字符是: 单引号()双引号(")反斜杠(\&…...
前端知识笔记(二)———Django与Ajax
特点: 异步提交 局部刷新 例子:github注册 动态获取用户名实时的跟后端确认并实时的展示到前端(局部刷新) 朝后端发送请求的方式 1.浏览器地址栏直接输入url回车 -----》get请求 2.a标签的href属性 -----》get请求 3…...
C++新经典模板与泛型编程:用成员函数重载实现is_base_of
用成员函数重载实现is_base_of std::is_base_of是一个C 11标准中用于判断某个类是否是另一个类父类的类模板。 #include "killCmake.h"#include<string>using namespace std;class A { };class B : public A { public:B(int x): x_(x){} private:int x_; };/…...
【vue3】处理数组方法,在数组中获取指定条件所在的数组对象等持续更新笔记~~
1、在数组中获取指定条件所在的数组对象 (1)filter方法获取到的是包含指定项的数组 data.checkRow res.result.filter(item > item.checked 1);打印: (2)map方法取到的是包含指定项的数组,如果满足…...
digit函数
题目描述 在程序中定义一函数 digit(n,k),它能分离出整数 n 从右边数第 k 个数字。 输入格式 正整数 n 和 k。 输出格式 一个数字。 输入输出样例 输入 #1 31859 3 输出 #1 8 说明/提示 n≤10^9。 k≤10。 因为用整数n来做有点难,所以我用…...
Linux中的堡垒机搭建以及使用
JumpServer搭建 安装应用包 curl -sSL https://resource.fit2cloud.com/jumpserver/jumpserver/releases/latest/download/quick_start.sh | bash 一路回车即可安装完毕(可根据需求更改) JumpServer的 配置文件路径 /opt/jumpserver/config/config.tx…...
ubuntu安装微信客户端
安装 Wine 环境 Wine环境包下载地址:http://archive.ubuntukylin.com/software/pool/partner/ukylin-wine_70.6.3.25_amd64.deb 下载完安装包后在命令行运行以下命令安装环境: sudo apt-get install -f -y ./ukylin-wine_70.6.3.25_amd64.deb 安装微信…...
ajax清空所有表单内容,包括input标签、单选框radio、多选框CheckBox、下拉框select以及文本域内容
为了实现重置并清空表单内容,你可以使用 jQuery 的 val 方法将各种表单元素的值设置为空字符串,并通过 layui 的 form.render 方法来更新表单的渲染。以下是修改后的代码: layui.use(["form", "laydate", "jquery&…...
通配符用法
在本篇文章中,本文将说明通配符用法。 (1)概述 通配符是在Linux命令中用于匹配文件名的特殊字符。它们可以帮助我们快速定位和操作文件。本文将介绍一些常用的通配符及其示例用法。 通配符是一种用于模式匹配的特殊字符。在计算机领域中&am…...
如何从eureka-server上进行服务发现,负载均衡远程调用服务
在spring cloud的maven的pom文件中添加eureka-client的依赖坐标 <!--eureka-client依赖--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-client</artifactId></dependen…...
Flutter实现Android拖动到垃圾桶删除效果-Draggable和DragTarget的详细讲解
文章目录 Draggable介绍构造函数参数说明使用示例 DragTarget 介绍构造函数参数说明使用示例 DragTarget 如何接收Draggable传递过来的数据? Draggable介绍 Draggable是Flutter框架中的一个小部件,用于支持用户通过手势拖动一个子部件。它是基于手势的一…...
Nacos和Eureka冲突问题原因分析
目录 一、问题现象二、解决办法三、原因分析 一、问题现象 Description:Field autoServiceRegistration in org.springframework.cloud.client.serviceregistry.AutoServiceRegistrationAutoConfiguration required a single bean, but 2 were found:- eurekaAutoServiceRegis…...
『C++成长记』拷贝构造函数
🔥博客主页:小王又困了 📚系列专栏:C 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、拷贝构造函数 📒1.1拷贝构造函数的概念 📒1.2拷贝构造…...
B 站基于 StarRocks 构建大数据元仓
作者:bilibili 大数据高级开发工程师 杨洋 B站大数据元仓是一款用来观测大数据引擎运行情况、推动大作业治理的系统诊断产品。经过调研和性能测试,大数据元仓最终以 StarRocks 为技术底座,从实际的应用效果来看,大部分查询都能在几…...
最常用的4种光纤接口结构
光纤接口,全名是光纤活动连接器。光纤连接器就是用于光纤与光纤之间进行可拆卸连接的器件,它是把光纤的两个端面精密的对接起来,使光能量前后达到最大程度的耦合。 光纤连接器属于高精密的器件,最常见结构形式可分包括:…...
Axure网页端高交互组件库, 下拉菜单文件上传穿梭框日期城市选择器
作品说明 组件数量:共 11 套 兼容软件:Axure RP 9/10,不支持低版本 应用领域:web端原型设计、桌面端原型设计 作品特色 本作品为「web端组件库」,高保真高交互 (带仿真功能效果);运用了动态面板、中继…...
基于Java新人入职管理系统
基于Java新人入职管理系统 功能需求 1、个人信息管理:系统需要提供个人信息管理功能,包括新人的基本信息、联系方式、教育背景、工作经历等。 2、入职流程管理:系统需要提供入职流程管理功能,包括入职手续的办理、合同签订、入…...
Python实战 | 如何抓取腾讯视频
嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 爬虫: 作用: 批量采集数据 / 模拟用户行为 原理: 模拟成 客户端 向 服务器 发送网络请求 环境介绍: python 3.8 解释器 pycharm 编辑器 第三方模块: reques…...
总结MySQL 的一些知识点:MySQL 导出数据
MySQL 导出数据 MySQL中你可以使用SELECT...INTO OUTFILE语句来简单的导出数据到文本文件上。 使用 SELECT ... INTO OUTFILE 语句导出数据 以下实例中我们将数据表 kxdang_tbl 数据导出到 /tmp/kxdang.txt 文件中: mysql> SELECT * FROM kxdang_tbl -> INTO OUTFILE /…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
链式法则中 复合函数的推导路径 多变量“信息传递路径”
非常好,我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题,统一使用 二重复合函数: z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y)) 来全面说明。我们会展示其全微分形式(偏导…...
Mac flutter环境搭建
一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...
