弟弟的作业
问题 G: 弟弟的作业
[命题人 : 外部导入]
时间限制 : 1.000 sec 内存限制 : 128 MB
题目描述
你的弟弟刚做完了“100以内数的加减法”这部分的作业,请你帮他检查一下。每道题目(包括弟弟的答案)的格式为a+b=c或者a-b=c,其中a和b是作业中给出的,均为不超过100的非负整数;c是弟弟算出的答案,可能是不超过200的非负整数,也可能是单个字符"?",表示他不会算。
输入
输入文件包含不超过100行,以文件结束符结尾。每行包含一道题目,格式保证符合上述规定,且不包含任何空白字符。输入的所有整数均不含前导0。
输出
输出仅一行,包含一个非负整数,即弟弟答对的题目数量。
样例输入 Copy
1+2=3
3-1=5
6+7=?
99-0=99
样例输出 Copy
2
#include<stdio.h>
int main()
{int a=0, b=0,num=0,c,mm;char plusAndMinus=0,equal=0;while ((mm=scanf("%d %c%d%c%d", &a, &plusAndMinus, &b, &equal,&c))!=EOF){if (mm != 5){getchar();continue;}else if (plusAndMinus == '+'){if (a + b == c)num++;}else{if (c == '?');else if (a - b == c)num++;}}printf("%d", num);return 0;
}
利用scanf的返回值
相关文章:
弟弟的作业
问题 G: 弟弟的作业 [命题人 : 外部导入] 时间限制 : 1.000 sec 内存限制 : 128 MB 题目描述 你的弟弟刚做完了“100以内数的加减法”这部分的作业,请你帮他检查一下。每道题目(包括弟弟的答案)的格式为abc或者a-bc,其中a和b是作…...
代码随想录算法训练营第37天|● 738.单调递增的数字 ● 968.监控二叉树 ● 总结
738. 单调递增的数字 中等 相关标签 相关企业 提示 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时,我们称这个整数是单调递增的。 给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。 示例 1: 输入: n 10输出: …...
出现 java: 找不到符号 符号: 变量 log 的解决方法
目录 1. 问题所示2. 原理分析3. 解决方法3.1 增加编译参数3.2 增加lombok插件3.3 清楚本地缓存1. 问题所示 使用Springboot启动项目的时候,出现如下bug: java: 找不到符号符号: 变量 log位置: 类 org.springblade.example.consumer.rpc.BlogStu...
大数据机器学习与深度学习—— 生成对抗网络(GAN)
GAN概述 在讲GAN之前,先讲一个小趣事,你知道GAN是怎么被发明的吗?据Ian Goodfellow自己说: 之前他一直在研究生成模型,可能是一时兴起,有一天他在酒吧喝酒时,在酒吧里跟朋友讨论起生成模型。然…...
vue前端访问Django channels WebSocket失败
现象 前端报错:SSH.vue:51 WebSocket connection to ‘ws://127.0.0.1:8000/server/terminal/120.59.88.26/22/1/’ failed: 后端报错:Not Found: /server/terminal/120.79.83.26/22/1/ 原因 django的版本与channels的版本不匹配(django…...
厉害了!水浸监控技术有升级啦
水浸监控在今天的社会中变得愈发重要,特别是在各种行业和场所。面对突发的水灾,及时有效的监测和预警系统可以帮助组织减少损失,保障人员和财产的安全。 客户案例 商业办公楼 合肥某大型商业办公楼面临着水灾风险,而传统的监控系…...
【开题报告】基于SpringBoot的大学生心理教育平台的设计与实现
1.研究背景 大学生心理健康问题一直备受关注。随着社会压力的增加、人际关系的复杂化以及学业与就业压力等因素的影响,大学生心理健康问题日益突出。因此,设计并实现基于SpringBoot的大学生心理教育平台具有重要的研究意义和实践价值。 (1&…...
376. 摆动序列
376. 摆动序列 原题链接:完成情况:解题思路:参考代码:_376摆动序列_376摆动序列 错误经验吸取 原题链接: 376. 摆动序列 https://leetcode.cn/problems/wiggle-subsequence/description/ 完成情况: 解题…...
现在个人想上架微信小游戏已经这么难了吗...
引言 大家好,最近我突然想起来我还有一款微信小游戏还没有上架,于是捣鼓了一天把游戏完善了一下,然后准备提交审核,却发现异常的艰难... 1.为什么难? 相信大家都大概知道,自从微信平台宣布 9月1日起&…...
C语言数据结构-----二叉树(2)堆的深入理解及应用、链式二叉树的讲解及代码实现
前言 本篇文章讲述的内容有部分是上一节写过的。重复内容不会再进行说明,大家可以看上一节内容 链接: C语言数据结构-----二叉树(1)认识数、二叉树、堆及堆的代码实现 文章目录 前言1.使用堆解决TOP-K问题2.向下调整堆的时间复杂度与向上调整堆的时间复杂度对比3.堆…...
【算法】【动规】等差数列划分
跳转汇总链接 👉🔗算法题汇总链接 1.2 等差数列划分 🔗题目链接 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是…...
系统架构设计师教程(五)软件工程基础知识
软件工程基础知识 5.1 软件工程5.1.1 软件工程定义5.1.2 软件过程模型5.1.3 敏捷模型敏捷开发的特点敏捷方法的核心思想主要敏捷方法简介 5.1.4 统一过程模型 (RUP)RUP的生命周期RUP中的核心概念RUP的特点 5.1.5 软件能力成熟度模型 5.2 需求工程5.2.1 需求获取需求获取的基本步…...
计算机中的文件管理
操作系统对计算机的管理包括两个方面:硬件资源和软件资源。硬件资源的管理包括CPU 的管理、存储器的管理、设备管理等,主要解决硬件资源的有效和合理利用问题。 软件资源包括各种系统程序、各种应用程序、各种用户程序,也包括大量的文档材料、…...
Linux常见排错思路及命令
Linux常见排错思路及命令 一、引言 在Linux系统中,由于其高度可配置和可定制的特性,可能会遇到各种问题。本文将介绍一些常见的排错思路,并提供一些常用的命令,以帮助您快速定位和解决问题。 二、常见排错思路 查看系统日志 …...
【springboot】【easyexcel】excel文件读取
目录 pom.xmlExcelVo逐行读取并处理全部读取并处理向ExcelListener 传参 pom.xml <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version> </dependency>ExcelVo 字段映射…...
【STM32】ADC模数转换器
1 ADC简介 ADC(Analog-Digital Converter)模拟-数字转换器 ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁 STM32是数字电路,只有高低电平,没有几V电压的概念ÿ…...
Git篇---第九篇
系列文章目录 文章目录 系列文章目录前言一、使用过git merge和git rebase吗?它们之间有什么区别?二、使用过git cherry-pick,有什么作用?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看…...
Paper Reading: (ACRST) 基于自适应类再平衡自训练的半监督目标检测
目录 简介工作重点方法CropBankFBRAFFRTwo-stage Pseudo-label Filtering 实验与SOTA比较消融实验 简介 题目:《Semi-Supervised Object Detection with Adaptive Class-Rebalancing Self-Training》,AAAI’22, 基于自适应类再平衡自训练的半…...
2023年贺岁电影:一眼多,二眼好多
如果从11月末开始统计,今年贺岁档共有72部贺岁片,平均一天就有2部电影上映,看完总计需要花费7400分钟。 这个数量几乎快赶上2021年到2022年贺岁片的总和。 今年电影市场快速回暖以来,多部爆款作品接力上映,持续刺激市…...
软件测试面试中基础与功能的问题
一、 你们的测试流程是怎么样的? 答:1.项目开始阶段, BA (需求分析师) 从用户方收集需求并将需求转化为规格说明书,接 下来在 项目组领导 会组织需求评审。 2.需求评审通过后,BA 会组织 项目…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
