智能优化算法应用:基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.狮群算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用狮群算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.狮群算法
狮群算法原理请参考:https://blog.csdn.net/u011835903/article/details/113418075
狮群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
狮群算法参数如下:
%% 设定狮群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明狮群算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.狮群算法4.实验参数设定5.算法结果6.参考文献7.MA…...
BERT、GPT学习问题个人记录
目录 1. 为什么过去几年大家都在做BERT, 做GPT的人少。 2. 但最近做GPT的多了以及为什么GPT架构的scaling(扩展性)比BERT好。 3.BERT是否可以用来做生成,如果可以的话为什么大家都用GPT不用BERT. 4. BERT里的NSP后面被认为是没用的&#x…...

HeartBeat监控Mysql状态
目录 一、概述 二、 安装部署 三、配置 四、启动服务 五、查看数据 一、概述 使用heartbeat可以实现在kibana界面对 Mysql 服务存活状态进行观察,如有必要,也可在服务宕机后立即向相关人员发送邮件通知 二、 安装部署 参照章节:监控组件…...
软件开发经常出现的bug原因有哪些
软件开发中出现bug的原因是多方面的,这些原因可能涉及到开发流程、人为因素、设计问题以及其他一系列因素。以下是一些常见的导致bug的原因: 1. 错误的需求分析: 不正确、不完整或者模糊的需求分析可能导致开发人员误解客户的需求࿰…...

代码随想录27期|Python|Day15|二叉树|层序遍历|对称二叉树|翻转二叉树
本文图片来源:代码随想录 层序遍历(图论中的广度优先遍历) 这一部分有10道题,全部可以套用相同的层序遍历方法,但是需要在每一层进行处理或者修改。 102. 二叉树的层序遍历 - 力扣(LeetCode) 层…...

鸿蒙开发组件之Web
一、加载一个url myWebController: WebviewController new webview.WebviewControllerbuild() {Column() {Web({src: https://www.baidu.com,controller: this.myWebController})}.width(100%).height(100%)} 二、注意点 2.1 不能用Previewer预览 Web这个组件不能使用预览…...
成绩分析。
成绩分析 题目描述 小蓝给学生们组织了一场考试,卷面总分为 100分,每个学生的得分都是一个0到100的整数。 请计算这次考试的最高分、最低分和平均分 输入描述 输入的第一行包含一个整数n(1n104),表示考试人数。 接下来n行,每行包含…...

Excel实现字母+数字拖拉自动递增,步长可更改
目录 1、带有字母的数字序列自增加(步长可变) 2、仅字母自增加 3、字母数字同时自增 1、带有字母的数字序列自增加(步长可变) 使用Excel通常可以直接通过拖拉的方式,实现自增数字…...
Java之Stream流
一、什么是Stream流 Stream是一种处理集合(Collection)数据的方式。Stream可以让我们以一种更简洁的方式对集合进行过滤、映射、排序等操作。 二、Stream流的使用步骤 先得到一条Stream流,并把数据放上去利用Stream流中的API进行各种操作 中间…...

vue中element-ui日期选择组件el-date-picker 清空所选时间,会将model绑定的值设置为null 问题 及 限制起止日期范围
一、问题 在Vue中使用Element UI的日期选择组件 <el-date-picker>,当你清空所选时间时,组件会将绑定的 v-model 值设置为 null。这是日期选择器的预设行为,它将清空所选日期后将其视为 null。但有时后端不允许日期传空。 因此ÿ…...

使用模方时,三维模型在su中显示不了怎么办?
答:可以借助截图功能截取模型影像在su中绘制白模。 模方是一款针对实景三维模型的冗余碎片、水面残缺、道路不平、标牌破损、纹理拉伸模糊等共性问题研发的实景三维模型修复编辑软件。模方4.1新增自动单体化建模功能,支持一键自动提取房屋结构ÿ…...

AR-LDM原理及代码分析
AR-LDM原理AR-LDM代码分析pytorch_lightning(pl)的hook流程main.py 具体分析TrainSampleLightningDatasetARLDM blip mm encoder AR-LDM原理 左边是模仿了自回归地从1, 2, ..., j-1来构造 j 时刻的 frame 的过程。 在普通Stable Diffusion的基础上,使用了1, 2, .…...

MySQL常见死锁的发生场景以及如何解决
死锁的产生是因为满足了四个条件: 互斥占有且等待不可强占用循环等待 这个网站收集了很多死锁场景 接下来介绍几种常见的死锁发生场景。其中,id 为主键,no(学号)为二级唯一索引,name(姓名&am…...

Leetcode 47 全排列 II
题意理解: 首先理解全排列是什么?全排列:使用集合中所有元素按照不同元素进行排列,将所有的排列结果的集合称为全排列。 这里的全排列难度升级了,问题在于集合中的元素是可以重复的。 问题:相同的元素会导致…...

C# 图解教程 第5版 —— 第18章 泛型
文章目录 18.1 什么是泛型18.2 C# 中的泛型18.3 泛型类18.3.1 声明泛型类18.3.2 创建构造类型18.3.3 创建变量和实例18.3.4 使用泛型的示例18.3.5 比较泛型和非泛型栈 18.4 类型参数的约束18.4.1 Where 子句18.4.2 约束类型和次序 18.5 泛型方法18.5.1 声明泛型方法18.5.2 调用…...

保障事务隔离级别的关键措施
目录 引言 1. 锁机制的应用 2. 多版本并发控制(MVCC)的实现 3. 事务日志的记录与恢复 4. 数据库引擎的实现策略 结论 引言 事务隔离级别是数据库管理系统(DBMS)中的一个关键概念,用于控制并发事务之间的可见性。…...
Docker导入导出镜像、导入导出容器的命令详解以及使用的场景
一、Docker 提供用于管理镜像和容器命令 1.1 docker save 与 docker load 这是一对操作,用于处理 Docker 镜像。这个操作会将所有的镜像层以及元数据打包到一个 tar 文件中。然后,你可以使用 docker load 命令将这个 tar 文件导入到任何 Docker 环境中…...

虚拟化嵌套
在理论上,可以在虚拟机(VM)内运行一个hypervisor,这个概念被称为嵌套虚拟化: 我们将第一个hypervisor称为Host Hypervisor,将VM内的hypervisor称为Guest Hypervisor。 在Armv8.3-A发布之前,可以通过在EL0中运行Guest Hypervisor来在VM中运行Guest Hypervisor。然而,这…...
【XILINX】记录ISE/Vivado使用过程中遇到的一些warning及解决方案
前言 XILINX/AMD是大家常用的FPGA,但是在使用其开发工具ISE/Vivado时免不了会遇到很多warning,(大家是不是发现程序越大warning越多?),并且还有很多warning根据消除不了,看着特心烦? 我这里汇总一些我遇到的…...

Tableau进阶--Tableau数据故事慧(20)解构Tableau的绘图逻辑
官网介绍 官网连接如下: https://www.tableau.com/zh-cn tableau的产品包括如下: 参考:https://zhuanlan.zhihu.com/p/341882097 Tableau是功能强大、灵活且安全些很高的端到端的数据分析平台,它提供了从数据准备、连接、分析、协作到查阅…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...