当前位置: 首页 > news >正文

Pytorch学习笔记#1:拟合函数/梯度下降

学习自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

概念

Pytorch Tensor在概念上和Numpy的array一样是一个nnn维向量的。不过Tensor可以在GPU中进行计算,且可以跟踪计算图(computational graph)和梯度(gradients)。

手动梯度下降拟合函数

我们用三次函数去拟合任意函数。
y^=a+bx+cx2+dx3\hat{y}=a+bx+cx^2+dx^3y^=a+bx+cx2+dx3
定义损失函数L=∑(y−y^)2L=\sum(y-\hat{y})^2L=(yy^)2
那么梯度为:
L:2∗∑(y−y^)L:2*\sum(y-\hat{y})L:2(yy^)
a:2∗∑(y−y^)a:2*\sum(y-\hat{y})a:2(yy^)
b:2∗x∗∑(y−y^)b:2*x*\sum(y-\hat{y})b:2x(yy^)
c:2∗x2∗∑(y−y^)c:2*x^2*\sum(y-\hat{y})c:2x2(yy^)
d:2∗x3∗∑(y−y^)d:2*x^3*\sum(y-\hat{y})d:2x3(yy^)

代码

import torch
import mathdtype = torch.float
device = torch.device("cuda:0") # Run on GPU# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device,dtype=dtype)
y = torch.sin(x)# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)learning_rate = 1e-6
for t in range(2000):# Forward pass: compute predicted yy_pred = a + b * x + c * x **2 + d *x ** 3# Compute and print lossloss = (y_pred - y).pow(2).sum().item()if t % 100 == 99:print(t, loss)# Backprop to compute gradients of a, b, c, d with respect to lossgrad_y_pred = 2.0 * (y_pred - y)grad_a = grad_y_pred.sum()grad_b = (grad_y_pred * x).sum()grad_c = (grad_y_pred * x ** 2).sum()grad_d = (grad_y_pred * x ** 3).sum()# Update weights using gradient descenta -= learning_rate * grad_ab -= learning_rate * grad_bc -= learning_rate * grad_cd -= learning_rate * grad_dprint(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

自动梯度下降拟合函数

通过PyTorch: nn构建神经网络,如果我们需要一个三次函数来拟合,那么我们就需要一个隐藏层为1层,节点为3个的神经网络。
y^=∑i=13(wixi+bi)\hat{y}=\sum_{i=1}^3(w_ix^i+b_i)y^=i=13(wixi+bi)

model = torch.nn.Sequential(torch.nn.Linear(3, 1), #三个节点torch.nn.Flatten(0, 1) # 把三个节点的结果加起来
)

由于我们的神经网络第一层有三个输入(x,x2,x3x,x^2,x^3x,x2,x3),所以我们需要把数据预处理一下

x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

然后我们预测输出就可以直接调用model了

y_pred = model(xx) # y_pred也是一个tensor

损失函数

loss_fn = torch.nn.MSELoss(reduction='sum') # 定义,使用均方误差
loss = loss_fn(y_pred, y) # 计算均方误差
model.zero_grad() # 先把原先模型的梯度信息清零
loss.backward() # 计算反向传播的梯度

完整代码

import torch
import mathx = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)model = torch.nn.Sequential(torch.nn.Linear(3, 1),torch.nn.Flatten(0, 1)
)loss_fn = torch.nn.MSELoss(reduction='sum')learning_rate = 1e-6
for t in range(2000):y_pred = model(xx)loss = loss_fn(y_pred, y)if t % 100 == 99:print(t, loss.item())model.zero_grad()loss.backward()with torch.no_grad(): # 进行梯度下降for param in model.parameters():param -= learning_rate * param.gradlinear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')

相关文章:

Pytorch学习笔记#1:拟合函数/梯度下降

学习自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html 概念 Pytorch Tensor在概念上和Numpy的array一样是一个nnn维向量的。不过Tensor可以在GPU中进行计算,且可以跟踪计算图(computational graph)和梯度(…...

挑战图像处理100问(24)——伽玛校正

伽马校正(Gamma Correction)是一种图像处理技术,用于校正显示设备的非线性响应。通过对图像进行伽马变换,可以将图像的亮度范围映射到显示设备的亮度范围内,从而提高图像的对比度和细节,改善图像的视觉效果…...

高级信息系统项目管理师(高项)软考论文评分标准(附历年高项论文题目汇总)

1、如果您想了解如何高分通过高级信息系统项目管理师(高项)你可以点击一下链接: 高级信息系统项目管理师(高项)高分通过经验分享_高项经验 2、如果您想了解更多的高级信息系统项目管理(高项 软考)原创论文&#xff0…...

MySQL实战记录篇2

事务? 1、事务的特性:原子性、一致性、隔离性、持久性 (ACID) 2、多事务同时执行的时候,可能会出现的问题:脏读、不可重复读、幻读 3、事务隔离级别:读未提交、读提交、可重复读、串行化 4、不…...

C++实现AVL树

目录 一、搜索二叉树 1.1 搜索二叉树概念 二、模拟实现二叉搜索树 2.1 框架 2.2 构造函数 2.2.1 构造函数 2.2.2 拷贝构造 2.2.3 赋值拷贝 2.3 插入函数 2.3.1 insert() 2.3.2 RcInsert() 递归实现 2.4 删除结点函数 2.4.1 Erase() 2.4.2 RcErase() 2.5 中序遍历…...

高并发语言erlang编程初步

初步 下载安装与初步使用 下载并安装,然后开始菜单中有对应的图标,打开就能进入erlang的命令行。当然也可以将其安装路径的bin文件夹加入环境变量,然后就可以在命令行中输入erl进入erlang了。 在erlang语言中,语句结束需要用.标…...

springboot 问题记录

部署到Tomcat中的时候,找不到需要部署的项目; project facets severt-name severt-class安装lombok.jar eclipse添加lombok插件后闪退打不开Clean 项目,project clean clean的作用检查插件部署项目Springboot修改端口号:applica…...

【PAT甲级题解记录】1034 Head of a Gang (30 分)

【PAT甲级题解记录】1034 Head of a Gang (30 分) 前言 Problem:1034 Head of a Gang (30 分) Tags:图的遍历 连通分量统计 DFS Difficulty:剧情模式 想流点汗 想流点血 死而无憾 Address:1034 Head of a Gang (30 分) 问题描述 …...

Python搭建一个steam钓鱼网站,只要免费领游戏,一钓一个准

前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! 我们日常上网的时候,总是会碰到一些盗号的网站,或者是别人发一些链接给你, 里面的内容是一些可以免费购物网站的优惠券、游戏官网上可以免费领取皮肤、打折的游戏。 这些盗号网站统一的目…...

maven 私服nexus安装与使用

一、下载nexus Sonatype公司的一款maven私服产品 1、官网下载地址:https://help.sonatype.com/repomanager3/product-information/download 2、csdn下载地址:https://download.csdn.net/download/u010197591/87522994 二、安装与配置 1、下载后解压如…...

详解数据结构中的顺序表的手动实现,顺序表功能接口【数据结构】

文章目录线性表顺序表接口实现尾插尾删头插头删指定位置插入指定位置删除练习线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列…...

【二】kubernetes操作

k8s卸载重置 名词解释 1、Namespace:名称用来隔离资源,不隔离网络 创建名称空间 一、命名空间namesapce 方式一:命令行创建 kubectl create ns hello删除名称空间 kubectl delete ns hello查询指定的名称空间 kubectl get pod -n kube-s…...

如何在 C++ 中调用 python 解析器来执行 python 代码(五)?

本节研究如何对 import 做白名单 目录 如何在 C 中调用 python 解析器来执行 python 代码(一)?如何在 C 中调用 python 解析器来执行 python 代码(二)?如何在 C 中调用 python 解析器来执行 python 代码&…...

八 SpringMVC【拦截器】登录验证

目录🚩一 SpringMVC拦截器✅ 1.配置文件✅2.登录验证代码(HandlerInterceptor)✅3.继承HandlerInterceptorAdapter(不建议使用)✅4.登录页面jsp✅5.主页面(操作页面)✅6.crud用户在访问页面时 只…...

PhotoShop基础使用

49:图片分类 1:像素图 特点:放大后可见,右一个个色块(像素)组合而成。 优点:容量小,纯天然 JPG、JPEG、png、GIF 2:矢量图 面向对象图像 绘图图像 特点:不…...

借助阿里云 AHPA,苏打智能轻松实现降本增效

作者:元毅 “高猛科技已在几个主要服务 ACK 集群上启用了 AHPA。相比于 HPA 的方案,AHPA 的主动预测模式额外降低了 12% 的资源成本。同时 AHPA 能够提前资源预热、自动容量规划,能够很好的应对突发流量。” ——赵劲松 (高猛科技高级后台工…...

美团2面:如何保障 MySQL 和 Redis 数据一致性?这样答,让面试官爱到 死去活来

美团2面:如何保障 MySQL 和 Redis 的数据一致性? 说在前面 在尼恩的(50)读者社群中,经常遇到一个 非常、非常高频的一个面试题,但是很不好回答,类似如下: 如何保障 MySQL 和 Redis…...

react hooks学习记录

react hook学习记录1.什么是hooks2.State Hook3.Effect Hook4.Ref Hook1.什么是hooks (1). Hook是React 16.8.0版本增加的新特性/新语法 (2). 可以让你在函数组件中使用 state 以及其他的 React 特性 貌似现在更多的也是使用函数式组件的了,重要 2.State Hook imp…...

创新型中小企业认定评定标准

一、公告条件评价得分达到 60 分以上(其中创新能力指标得分不低于 20 分、成长性指标及专业化指标得分均不低于 15 分),或满足下列条件之一:(一)近三年内获得过国家级、省级科技奖励。(二&#…...

记录一次nginx转发代理skywalking白屏 以及nginx鉴权配置

上nginx代码 #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info; #pid logs/nginx.pid; events { worker_connections 1024; } http { include mime.types; …...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

生成 Git SSH 证书

🔑 1. ​​生成 SSH 密钥对​​ 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​: -t rsa&#x…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

【java面试】微服务篇

【java面试】微服务篇 一、总体框架二、Springcloud(一)Springcloud五大组件(二)服务注册和发现1、Eureka2、Nacos (三)负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap,但是由于很多朋友看不了解命令行格式,所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习,链接:https://wwhc.lanzoue.com/ifJY32ybh6vc…...