Pytorch学习笔记#1:拟合函数/梯度下降
学习自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
概念
Pytorch Tensor在概念上和Numpy的array一样是一个nnn维向量的。不过Tensor可以在GPU中进行计算,且可以跟踪计算图(computational graph)和梯度(gradients)。
手动梯度下降拟合函数
我们用三次函数去拟合任意函数。
y^=a+bx+cx2+dx3\hat{y}=a+bx+cx^2+dx^3y^=a+bx+cx2+dx3
定义损失函数L=∑(y−y^)2L=\sum(y-\hat{y})^2L=∑(y−y^)2
那么梯度为:
L:2∗∑(y−y^)L:2*\sum(y-\hat{y})L:2∗∑(y−y^)
a:2∗∑(y−y^)a:2*\sum(y-\hat{y})a:2∗∑(y−y^)
b:2∗x∗∑(y−y^)b:2*x*\sum(y-\hat{y})b:2∗x∗∑(y−y^)
c:2∗x2∗∑(y−y^)c:2*x^2*\sum(y-\hat{y})c:2∗x2∗∑(y−y^)
d:2∗x3∗∑(y−y^)d:2*x^3*\sum(y-\hat{y})d:2∗x3∗∑(y−y^)
代码
import torch
import mathdtype = torch.float
device = torch.device("cuda:0") # Run on GPU# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device,dtype=dtype)
y = torch.sin(x)# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)learning_rate = 1e-6
for t in range(2000):# Forward pass: compute predicted yy_pred = a + b * x + c * x **2 + d *x ** 3# Compute and print lossloss = (y_pred - y).pow(2).sum().item()if t % 100 == 99:print(t, loss)# Backprop to compute gradients of a, b, c, d with respect to lossgrad_y_pred = 2.0 * (y_pred - y)grad_a = grad_y_pred.sum()grad_b = (grad_y_pred * x).sum()grad_c = (grad_y_pred * x ** 2).sum()grad_d = (grad_y_pred * x ** 3).sum()# Update weights using gradient descenta -= learning_rate * grad_ab -= learning_rate * grad_bc -= learning_rate * grad_cd -= learning_rate * grad_dprint(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
自动梯度下降拟合函数
通过PyTorch: nn构建神经网络,如果我们需要一个三次函数来拟合,那么我们就需要一个隐藏层为1层,节点为3个的神经网络。
即y^=∑i=13(wixi+bi)\hat{y}=\sum_{i=1}^3(w_ix^i+b_i)y^=∑i=13(wixi+bi)
model = torch.nn.Sequential(torch.nn.Linear(3, 1), #三个节点torch.nn.Flatten(0, 1) # 把三个节点的结果加起来
)
由于我们的神经网络第一层有三个输入(x,x2,x3x,x^2,x^3x,x2,x3),所以我们需要把数据预处理一下
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
然后我们预测输出就可以直接调用model了
y_pred = model(xx) # y_pred也是一个tensor
损失函数
loss_fn = torch.nn.MSELoss(reduction='sum') # 定义,使用均方误差
loss = loss_fn(y_pred, y) # 计算均方误差
model.zero_grad() # 先把原先模型的梯度信息清零
loss.backward() # 计算反向传播的梯度
完整代码
import torch
import mathx = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)model = torch.nn.Sequential(torch.nn.Linear(3, 1),torch.nn.Flatten(0, 1)
)loss_fn = torch.nn.MSELoss(reduction='sum')learning_rate = 1e-6
for t in range(2000):y_pred = model(xx)loss = loss_fn(y_pred, y)if t % 100 == 99:print(t, loss.item())model.zero_grad()loss.backward()with torch.no_grad(): # 进行梯度下降for param in model.parameters():param -= learning_rate * param.gradlinear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
相关文章:
Pytorch学习笔记#1:拟合函数/梯度下降
学习自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html 概念 Pytorch Tensor在概念上和Numpy的array一样是一个nnn维向量的。不过Tensor可以在GPU中进行计算,且可以跟踪计算图(computational graph)和梯度(…...
挑战图像处理100问(24)——伽玛校正
伽马校正(Gamma Correction)是一种图像处理技术,用于校正显示设备的非线性响应。通过对图像进行伽马变换,可以将图像的亮度范围映射到显示设备的亮度范围内,从而提高图像的对比度和细节,改善图像的视觉效果…...
高级信息系统项目管理师(高项)软考论文评分标准(附历年高项论文题目汇总)
1、如果您想了解如何高分通过高级信息系统项目管理师(高项)你可以点击一下链接: 高级信息系统项目管理师(高项)高分通过经验分享_高项经验 2、如果您想了解更多的高级信息系统项目管理(高项 软考)原创论文࿰…...
MySQL实战记录篇2
事务? 1、事务的特性:原子性、一致性、隔离性、持久性 (ACID) 2、多事务同时执行的时候,可能会出现的问题:脏读、不可重复读、幻读 3、事务隔离级别:读未提交、读提交、可重复读、串行化 4、不…...
C++实现AVL树
目录 一、搜索二叉树 1.1 搜索二叉树概念 二、模拟实现二叉搜索树 2.1 框架 2.2 构造函数 2.2.1 构造函数 2.2.2 拷贝构造 2.2.3 赋值拷贝 2.3 插入函数 2.3.1 insert() 2.3.2 RcInsert() 递归实现 2.4 删除结点函数 2.4.1 Erase() 2.4.2 RcErase() 2.5 中序遍历…...
高并发语言erlang编程初步
初步 下载安装与初步使用 下载并安装,然后开始菜单中有对应的图标,打开就能进入erlang的命令行。当然也可以将其安装路径的bin文件夹加入环境变量,然后就可以在命令行中输入erl进入erlang了。 在erlang语言中,语句结束需要用.标…...
springboot 问题记录
部署到Tomcat中的时候,找不到需要部署的项目; project facets severt-name severt-class安装lombok.jar eclipse添加lombok插件后闪退打不开Clean 项目,project clean clean的作用检查插件部署项目Springboot修改端口号:applica…...
【PAT甲级题解记录】1034 Head of a Gang (30 分)
【PAT甲级题解记录】1034 Head of a Gang (30 分) 前言 Problem:1034 Head of a Gang (30 分) Tags:图的遍历 连通分量统计 DFS Difficulty:剧情模式 想流点汗 想流点血 死而无憾 Address:1034 Head of a Gang (30 分) 问题描述 …...
Python搭建一个steam钓鱼网站,只要免费领游戏,一钓一个准
前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! 我们日常上网的时候,总是会碰到一些盗号的网站,或者是别人发一些链接给你, 里面的内容是一些可以免费购物网站的优惠券、游戏官网上可以免费领取皮肤、打折的游戏。 这些盗号网站统一的目…...
maven 私服nexus安装与使用
一、下载nexus Sonatype公司的一款maven私服产品 1、官网下载地址:https://help.sonatype.com/repomanager3/product-information/download 2、csdn下载地址:https://download.csdn.net/download/u010197591/87522994 二、安装与配置 1、下载后解压如…...
详解数据结构中的顺序表的手动实现,顺序表功能接口【数据结构】
文章目录线性表顺序表接口实现尾插尾删头插头删指定位置插入指定位置删除练习线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列…...
【二】kubernetes操作
k8s卸载重置 名词解释 1、Namespace:名称用来隔离资源,不隔离网络 创建名称空间 一、命名空间namesapce 方式一:命令行创建 kubectl create ns hello删除名称空间 kubectl delete ns hello查询指定的名称空间 kubectl get pod -n kube-s…...
如何在 C++ 中调用 python 解析器来执行 python 代码(五)?
本节研究如何对 import 做白名单 目录 如何在 C 中调用 python 解析器来执行 python 代码(一)?如何在 C 中调用 python 解析器来执行 python 代码(二)?如何在 C 中调用 python 解析器来执行 python 代码&…...
八 SpringMVC【拦截器】登录验证
目录🚩一 SpringMVC拦截器✅ 1.配置文件✅2.登录验证代码(HandlerInterceptor)✅3.继承HandlerInterceptorAdapter(不建议使用)✅4.登录页面jsp✅5.主页面(操作页面)✅6.crud用户在访问页面时 只…...
PhotoShop基础使用
49:图片分类 1:像素图 特点:放大后可见,右一个个色块(像素)组合而成。 优点:容量小,纯天然 JPG、JPEG、png、GIF 2:矢量图 面向对象图像 绘图图像 特点:不…...
借助阿里云 AHPA,苏打智能轻松实现降本增效
作者:元毅 “高猛科技已在几个主要服务 ACK 集群上启用了 AHPA。相比于 HPA 的方案,AHPA 的主动预测模式额外降低了 12% 的资源成本。同时 AHPA 能够提前资源预热、自动容量规划,能够很好的应对突发流量。” ——赵劲松 (高猛科技高级后台工…...
美团2面:如何保障 MySQL 和 Redis 数据一致性?这样答,让面试官爱到 死去活来
美团2面:如何保障 MySQL 和 Redis 的数据一致性? 说在前面 在尼恩的(50)读者社群中,经常遇到一个 非常、非常高频的一个面试题,但是很不好回答,类似如下: 如何保障 MySQL 和 Redis…...
react hooks学习记录
react hook学习记录1.什么是hooks2.State Hook3.Effect Hook4.Ref Hook1.什么是hooks (1). Hook是React 16.8.0版本增加的新特性/新语法 (2). 可以让你在函数组件中使用 state 以及其他的 React 特性 貌似现在更多的也是使用函数式组件的了,重要 2.State Hook imp…...
创新型中小企业认定评定标准
一、公告条件评价得分达到 60 分以上(其中创新能力指标得分不低于 20 分、成长性指标及专业化指标得分均不低于 15 分),或满足下列条件之一:(一)近三年内获得过国家级、省级科技奖励。(二&#…...
记录一次nginx转发代理skywalking白屏 以及nginx鉴权配置
上nginx代码 #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info; #pid logs/nginx.pid; events { worker_connections 1024; } http { include mime.types; …...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
