当前位置: 首页 > news >正文

BERT大模型:英语NLP的里程碑

BERT的诞生与重要性

BERT(Bidirectional Encoder Representations from Transformers)大模型标志着自然语言处理(NLP)领域的一个重要转折点。作为首个利用掩蔽语言模型(MLM)在英语语言上进行预训练的模型,BERT的推出改变了整个领域的研究和应用方向。

模型架构与创新

BERT的创新之处在于其双向表示的能力,它不仅能够区分大小写,更能深入理解英语语言的复杂结构。这一模型利用变换器(Transformer)架构,通过自监督的方式在大量英文文本上进行预训练,无需任何人工标注。

训练目标与方法

BERT的训练包括两个主要目标:掩蔽语言模型(MLM)和下一句预测(NSP)。在MLM中,BERT随机掩蔽输入句子的一部分单词,然后预测这些被掩蔽的词;而在NSP中,模型需要判断两个句子是否在原始文本中相邻。这种双重目标的训练方法使BERT能够学习到英语的双向表示。

模型配置

BERT大模型的配置如下:

  • 24层网络

  • 1024隐藏维度

  • 16个注意力头

  • 3.36亿参数

这一强大的配置使得BERT在多种英语NLP任务中表现卓越。

应用范围

原始的BERT模型主要用于掩蔽语言建模和下一句预测任务。但它的主要用途是针对特定下游任务进行微调,如序列分类、标记分类或问答任务。对于如文本生成等其他NLP任务,建议使用类似GPT2的模型。

结论

BERT大模型的发布不仅在技术上开创了NLP领域的新篇章,也为自然语言理解提供了全新的视角。它的出现为英语语言处理的研究和应用提供了强大的工具和丰富的可能性。

模型下载

Huggingface模型下载

https://huggingface.co/bert-large-cased

AI快站模型免费加速下载

https://aifasthub.com/models/bert-large-cased

相关文章:

BERT大模型:英语NLP的里程碑

BERT的诞生与重要性 BERT(Bidirectional Encoder Representations from Transformers)大模型标志着自然语言处理(NLP)领域的一个重要转折点。作为首个利用掩蔽语言模型(MLM)在英语语言上进行预训练的模型&…...

JVM的类的生命周期

目录 前言 1. 加载(Loading): 2. 验证(Verification): 3. 准备(Preparation): 4. 解析(Resolution): 5. 初始化(Ini…...

uni-app获取response header响应头(h5/app/小程序三端)

h5、app获取方式:getResponseHeader(key) 示例:参考:HTML5 API Reference // 创建xhr实例: // #ifdef APP-VUE let xhr new plus.net.XMLHttpRequest(); // #endif // #ifdef H5 let xhr new window.XMLHttpRequest(); // #en…...

本地部署语音转文字(whisper,SpeechRecognition)

本地部署语音转文字 1.whisper1.首先安装Chocolatey2.安装3.使用 2.SpeechRecognition1.环境2.中文包3.格式转化4.运行 3.效果 1.whisper 1.首先安装Chocolatey https://github.com/openai/whisper 以管理员身份运行PowerShell Set-ExecutionPolicy Bypass -Scope Process -…...

js new 原理

mdn new new 调用函数时,该函数将被用作构造函数 类只能用 new 运算符实例化 不使用 new 调用一个类将抛出 TypeError。 过程 new Foo(…) 执行时: 创建一个空的简单 JavaScript 对象。 为方便起见,我们称之为 newInstance。 如果构造函数…...

智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.黏菌算法4.实验参数设定5.算法结果6.参考文献7.MA…...

LeetCode每日一题——2132.用邮票贴满网格图

参考资料: 2132. 用邮票贴满网格图 - 力扣(LeetCode) 题目描述 给你一个 m x n 的二进制矩阵 grid ,每个格子要么为 0 (空)要么为 1 (被占据)。 给你邮票的尺寸为 stampHeight x…...

PyQt6 表单布局Form Layout (QFormLayout)

锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计43条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话版…...

Python: any()函数

在Python中,any函数是一个内置函数,它接受一个可迭代对象作为参数,并返回一个布尔值。当可迭代对象中至少一个元素为真(非零、非空、非None等)时,any函数返回True;否则,返回False。 …...

一些AG10K FPGA 调试的建议-Douglas

PLL AGM FPGA 在配置成功时,PLL 已经完成锁定,lock 信号已经变高;如果原设计中用 lock 信号输出实现系统 reset 的复位功能,就不能正确完成上电复位;同时,为了保证 PLL 相移的稳定,我们需要在 P…...

【模型量化】神经网络量化基础及代码学习总结

1 量化的介绍 量化是减少神经网络计算时间和能耗的最有效的方法之一。在神经网络量化中,权重和激活张量存储在比训练时通常使用的16-bit或32-bit更低的比特精度。当从32-bit降低到8-bit,存储张量的内存开销减少了4倍,矩阵乘法的计算成本则二…...

次模和K次模是多项式可解吗?

次模是多项式可解吗 **是的,**次模函数的最优化问题通常是多项式时间可解的。这是因为次模性质导致了问题的结构,使得可以利用高效的算法进行求解。 具体来说,针对次模函数的最优化问题,例如极大化或极小化这样的目标函数&#xf…...

网络安全——SQL注入实验

一、实验目的要求: 二、实验设备与环境: 三、实验原理: 四、实验步骤: 五、实验现象、结果记录及整理: 六、分析讨论与思考题解答: 七、实验截图: 一、实验目的要求: 1、…...

【cocotb】【达坦科技DatenLord】Cocotb Workshop分享

https://www.bilibili.com/video/BV19e4y1k7EE/?spm_id_from333.337.search-card.all.click&vd_sourcefd0f4be6d0a5aaa0a79d89604df3154a 方便RFM实现 cocotb_test 替代makefile , 类似python 函数执行...

Kafka系列之:统计kafka集群Topic的分区数和副本数,批量增加topic副本数

Kafka系列之:统计kafka集群Topic的分区数和副本数,批量增加topic副本数 一、创建KafkaAdminClient二、获取kafka集群topic元信息三、获取每个topic的名称、分区数、副本数四、生成增加topic副本的json文件五、执行增加topic副本的命令六、确认topic增加副本是否成功一、创建K…...

开具实习证明:在线实习项目介绍

大数据在线实习项目,是在线上为学生提供实习经验的项目。我们希望能够帮助想要在毕业后从事数据科学类工作的学生更加顺利地适应从教室到职场的转换;也帮助那些在工作中需要处理数据、实现数据价值的其他职能的从业者高效快速地掌握每天都能用起来的数据…...

MFC逆向之CrackMe Level3 过反调试 + 写注册机

今天我来分享一下,过反调试的方法以及使用IDA还原代码 写注册机的过程 由于内容太多,我准备分为两个帖子写,这个帖子主要是写IDA还原代码,下一个帖子是写反调试的分析以及过反调试和异常 这个CrackMe Level3是一个朋友发我的,我也不知道他在哪里弄的,我感觉挺好玩的,对反调试…...

【Centos】

一、Virtualbox安装Centos 1、Virtualbox 下载地址: Virtualbox 2、Centos 下载地址: Centos 3、Virtualbox安装Centos教程 Virtualbox安装Centos教程: Virtualbox安装Centos教程...

1+X大数据平台运维职业技能等级证书中级

hadoop: 由于我的功能限制,我无法直接为您执行这些操作或提供实际的截图。但我可以为您提供一步步的指导,帮助您完成这些任务。 1. 解压JDK安装包到“/usr/local/src”路径,并配置环境变量。 - 解压JDK:tar -zxf jd…...

网络基础(五):网络层协议介绍

目录 一、网络层 1、网络层的概念 2、网络层功能 3、IP数据包格式 二、ICMP协议 1、ICMP的作用和功能 2、ping命令的使用 2.1ping命令的通用格式 2.2ping命令的常用参数 2.3TypeCode:查看不同功能的ICMP报文 2.4ping出现问题 3、Tracert 4、冲突域 5、…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

LLM基础1_语言模型如何处理文本

基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...