BERT大模型:英语NLP的里程碑
BERT的诞生与重要性
BERT(Bidirectional Encoder Representations from Transformers)大模型标志着自然语言处理(NLP)领域的一个重要转折点。作为首个利用掩蔽语言模型(MLM)在英语语言上进行预训练的模型,BERT的推出改变了整个领域的研究和应用方向。
模型架构与创新
BERT的创新之处在于其双向表示的能力,它不仅能够区分大小写,更能深入理解英语语言的复杂结构。这一模型利用变换器(Transformer)架构,通过自监督的方式在大量英文文本上进行预训练,无需任何人工标注。
训练目标与方法
BERT的训练包括两个主要目标:掩蔽语言模型(MLM)和下一句预测(NSP)。在MLM中,BERT随机掩蔽输入句子的一部分单词,然后预测这些被掩蔽的词;而在NSP中,模型需要判断两个句子是否在原始文本中相邻。这种双重目标的训练方法使BERT能够学习到英语的双向表示。
模型配置
BERT大模型的配置如下:
-
24层网络
-
1024隐藏维度
-
16个注意力头
-
3.36亿参数
这一强大的配置使得BERT在多种英语NLP任务中表现卓越。
应用范围
原始的BERT模型主要用于掩蔽语言建模和下一句预测任务。但它的主要用途是针对特定下游任务进行微调,如序列分类、标记分类或问答任务。对于如文本生成等其他NLP任务,建议使用类似GPT2的模型。
结论
BERT大模型的发布不仅在技术上开创了NLP领域的新篇章,也为自然语言理解提供了全新的视角。它的出现为英语语言处理的研究和应用提供了强大的工具和丰富的可能性。
模型下载
Huggingface模型下载
https://huggingface.co/bert-large-cased
AI快站模型免费加速下载
https://aifasthub.com/models/bert-large-cased
相关文章:
BERT大模型:英语NLP的里程碑
BERT的诞生与重要性 BERT(Bidirectional Encoder Representations from Transformers)大模型标志着自然语言处理(NLP)领域的一个重要转折点。作为首个利用掩蔽语言模型(MLM)在英语语言上进行预训练的模型&…...
JVM的类的生命周期
目录 前言 1. 加载(Loading): 2. 验证(Verification): 3. 准备(Preparation): 4. 解析(Resolution): 5. 初始化(Ini…...
uni-app获取response header响应头(h5/app/小程序三端)
h5、app获取方式:getResponseHeader(key) 示例:参考:HTML5 API Reference // 创建xhr实例: // #ifdef APP-VUE let xhr new plus.net.XMLHttpRequest(); // #endif // #ifdef H5 let xhr new window.XMLHttpRequest(); // #en…...
本地部署语音转文字(whisper,SpeechRecognition)
本地部署语音转文字 1.whisper1.首先安装Chocolatey2.安装3.使用 2.SpeechRecognition1.环境2.中文包3.格式转化4.运行 3.效果 1.whisper 1.首先安装Chocolatey https://github.com/openai/whisper 以管理员身份运行PowerShell Set-ExecutionPolicy Bypass -Scope Process -…...
js new 原理
mdn new new 调用函数时,该函数将被用作构造函数 类只能用 new 运算符实例化 不使用 new 调用一个类将抛出 TypeError。 过程 new Foo(…) 执行时: 创建一个空的简单 JavaScript 对象。 为方便起见,我们称之为 newInstance。 如果构造函数…...
智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.黏菌算法4.实验参数设定5.算法结果6.参考文献7.MA…...
LeetCode每日一题——2132.用邮票贴满网格图
参考资料: 2132. 用邮票贴满网格图 - 力扣(LeetCode) 题目描述 给你一个 m x n 的二进制矩阵 grid ,每个格子要么为 0 (空)要么为 1 (被占据)。 给你邮票的尺寸为 stampHeight x…...
PyQt6 表单布局Form Layout (QFormLayout)
锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计43条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话版…...
Python: any()函数
在Python中,any函数是一个内置函数,它接受一个可迭代对象作为参数,并返回一个布尔值。当可迭代对象中至少一个元素为真(非零、非空、非None等)时,any函数返回True;否则,返回False。 …...
一些AG10K FPGA 调试的建议-Douglas
PLL AGM FPGA 在配置成功时,PLL 已经完成锁定,lock 信号已经变高;如果原设计中用 lock 信号输出实现系统 reset 的复位功能,就不能正确完成上电复位;同时,为了保证 PLL 相移的稳定,我们需要在 P…...
【模型量化】神经网络量化基础及代码学习总结
1 量化的介绍 量化是减少神经网络计算时间和能耗的最有效的方法之一。在神经网络量化中,权重和激活张量存储在比训练时通常使用的16-bit或32-bit更低的比特精度。当从32-bit降低到8-bit,存储张量的内存开销减少了4倍,矩阵乘法的计算成本则二…...
次模和K次模是多项式可解吗?
次模是多项式可解吗 **是的,**次模函数的最优化问题通常是多项式时间可解的。这是因为次模性质导致了问题的结构,使得可以利用高效的算法进行求解。 具体来说,针对次模函数的最优化问题,例如极大化或极小化这样的目标函数…...
网络安全——SQL注入实验
一、实验目的要求: 二、实验设备与环境: 三、实验原理: 四、实验步骤: 五、实验现象、结果记录及整理: 六、分析讨论与思考题解答: 七、实验截图: 一、实验目的要求: 1、…...
【cocotb】【达坦科技DatenLord】Cocotb Workshop分享
https://www.bilibili.com/video/BV19e4y1k7EE/?spm_id_from333.337.search-card.all.click&vd_sourcefd0f4be6d0a5aaa0a79d89604df3154a 方便RFM实现 cocotb_test 替代makefile , 类似python 函数执行...
Kafka系列之:统计kafka集群Topic的分区数和副本数,批量增加topic副本数
Kafka系列之:统计kafka集群Topic的分区数和副本数,批量增加topic副本数 一、创建KafkaAdminClient二、获取kafka集群topic元信息三、获取每个topic的名称、分区数、副本数四、生成增加topic副本的json文件五、执行增加topic副本的命令六、确认topic增加副本是否成功一、创建K…...
开具实习证明:在线实习项目介绍
大数据在线实习项目,是在线上为学生提供实习经验的项目。我们希望能够帮助想要在毕业后从事数据科学类工作的学生更加顺利地适应从教室到职场的转换;也帮助那些在工作中需要处理数据、实现数据价值的其他职能的从业者高效快速地掌握每天都能用起来的数据…...
MFC逆向之CrackMe Level3 过反调试 + 写注册机
今天我来分享一下,过反调试的方法以及使用IDA还原代码 写注册机的过程 由于内容太多,我准备分为两个帖子写,这个帖子主要是写IDA还原代码,下一个帖子是写反调试的分析以及过反调试和异常 这个CrackMe Level3是一个朋友发我的,我也不知道他在哪里弄的,我感觉挺好玩的,对反调试…...
【Centos】
一、Virtualbox安装Centos 1、Virtualbox 下载地址: Virtualbox 2、Centos 下载地址: Centos 3、Virtualbox安装Centos教程 Virtualbox安装Centos教程: Virtualbox安装Centos教程...
1+X大数据平台运维职业技能等级证书中级
hadoop: 由于我的功能限制,我无法直接为您执行这些操作或提供实际的截图。但我可以为您提供一步步的指导,帮助您完成这些任务。 1. 解压JDK安装包到“/usr/local/src”路径,并配置环境变量。 - 解压JDK:tar -zxf jd…...
网络基础(五):网络层协议介绍
目录 一、网络层 1、网络层的概念 2、网络层功能 3、IP数据包格式 二、ICMP协议 1、ICMP的作用和功能 2、ping命令的使用 2.1ping命令的通用格式 2.2ping命令的常用参数 2.3TypeCode:查看不同功能的ICMP报文 2.4ping出现问题 3、Tracert 4、冲突域 5、…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
