除法求值[中等]
一、题目
给你一个变量对数组equations和一个实数值数组values作为已知条件,其中equations[i] = [Ai, Bi]和values[i]共同表示等式Ai / Bi = values[i]。每个Ai或Bi是一个表示单个变量的字符串。另有一些以数组queries表示的问题,其中queries[j] = [Cj, Dj]表示第j个问题,请你根据已知条件找出Cj / Dj = ?的结果作为答案。返回 所有问题的答案 。如果存在某个无法确定的答案,则用-1.0替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用-1.0替代这个答案。
注意:输入总是有效的。你可以假设除法运算中不会出现除数为0的情况,且不存在任何矛盾的结果。
注意:未在等式列表中出现的变量是未定义的,因此无法确定它们的答案。
示例 1:
输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
注意:x是未定义的=> -1.0
示例 2:
输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]
示例 3:
输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai,Bi,Cj,Dj由小写英文字母与数字组成
二、代码
广度优先搜索: 我们可以将整个问题建模成一张图:给定图中的一些点(变量),以及某些边的权值(两个变量的比值),试对任意两点(两个变量)求出其路径长(两个变量的比值)。因此,我们首先需要遍历equations数组,找出其中所有不同的字符串,并通过哈希表将每个不同的字符串映射成整数。
在构建完图之后,对于任何一个查询,就可以从起点出发,通过广度优先搜索的方式,不断更新起点与当前点之间的路径长度,直到搜索到终点为止。
class Solution {public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {int nvars = 0;Map<String, Integer> variables = new HashMap<String, Integer>();int n = equations.size();for (int i = 0; i < n; i++) {if (!variables.containsKey(equations.get(i).get(0))) {variables.put(equations.get(i).get(0), nvars++);}if (!variables.containsKey(equations.get(i).get(1))) {variables.put(equations.get(i).get(1), nvars++);}}// 对于每个点,存储其直接连接到的所有点及对应的权值List<Pair>[] edges = new List[nvars];for (int i = 0; i < nvars; i++) {edges[i] = new ArrayList<Pair>();}for (int i = 0; i < n; i++) {int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));edges[va].add(new Pair(vb, values[i]));edges[vb].add(new Pair(va, 1.0 / values[i]));}int queriesCount = queries.size();double[] ret = new double[queriesCount];for (int i = 0; i < queriesCount; i++) {List<String> query = queries.get(i);double result = -1.0;if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));if (ia == ib) {result = 1.0;} else {Queue<Integer> points = new LinkedList<Integer>();points.offer(ia);double[] ratios = new double[nvars];Arrays.fill(ratios, -1.0);ratios[ia] = 1.0;while (!points.isEmpty() && ratios[ib] < 0) {int x = points.poll();for (Pair pair : edges[x]) {int y = pair.index;double val = pair.value;if (ratios[y] < 0) {ratios[y] = ratios[x] * val;points.offer(y);}}}result = ratios[ib];}}ret[i] = result;}return ret;}
}class Pair {int index;double value;Pair(int index, double value) {this.index = index;this.value = value;}
}
时间复杂度: O(ML+Q⋅(L+M)),其中M为边的数量,Q为询问的数量,L为字符串的平均长度。构建图时,需要处理M条边,每条边都涉及到O(L)的字符串比较;处理查询时,每次查询首先要进行一次O(L)的比较,然后至多遍历O(M)条边。
空间复杂度: O(NL+M),其中N为点的数量,M为边的数量,L为字符串的平均长度。为了将每个字符串映射到整数,需要开辟空间为O(NL)的哈希表;随后,需要花费O(M)的空间存储每条边的权重;处理查询时,还需要O(N)的空间维护访问队列。最终,总的复杂度为O(NL+M+N)=O(NL+M)。
【2】Floyd 算法: 对于查询数量很多的情形,如果为每次查询都独立搜索一次,则效率会变低。为此,我们不妨对图先做一定的预处理,随后就可以在较短的时间内回答每个查询。在本题中,我们可以使用Floyd算法,预先计算出任意两点之间的距离。
class Solution {public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {int nvars = 0;Map<String, Integer> variables = new HashMap<String, Integer>();int n = equations.size();for (int i = 0; i < n; i++) {if (!variables.containsKey(equations.get(i).get(0))) {variables.put(equations.get(i).get(0), nvars++);}if (!variables.containsKey(equations.get(i).get(1))) {variables.put(equations.get(i).get(1), nvars++);}}double[][] graph = new double[nvars][nvars];for (int i = 0; i < nvars; i++) {Arrays.fill(graph[i], -1.0);}for (int i = 0; i < n; i++) {int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));graph[va][vb] = values[i];graph[vb][va] = 1.0 / values[i];}for (int k = 0; k < nvars; k++) {for (int i = 0; i < nvars; i++) {for (int j = 0; j < nvars; j++) {if (graph[i][k] > 0 && graph[k][j] > 0) {graph[i][j] = graph[i][k] * graph[k][j];}}}}int queriesCount = queries.size();double[] ret = new double[queriesCount];for (int i = 0; i < queriesCount; i++) {List<String> query = queries.get(i);double result = -1.0;if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));if (graph[ia][ib] > 0) {result = graph[ia][ib];}}ret[i] = result;}return ret;}
}
时间复杂度: O(ML+N3+QL)。构建图需要O(ML)的时间;Floyd算法需要O(N^3)的时间;处理查询时,单次查询只需要O(L)的字符串比较以及常数时间的额外操作。
空间复杂度: O(NL+N^2)。
相关文章:
除法求值[中等]
一、题目 给你一个变量对数组equations和一个实数值数组values作为已知条件,其中equations[i] [Ai, Bi]和values[i]共同表示等式Ai / Bi values[i]。每个Ai或Bi是一个表示单个变量的字符串。另有一些以数组queries表示的问题,其中queries[j] [Cj, Dj…...
新时代商业市场:AR技术的挑战与机遇并存
随着科技的不断发展,增强现实(AR)技术逐渐成为当今社会的一个重要组成部分。AR技术能够将虚拟世界与现实世界相结合,为人们提供更加丰富、多样化的体验。在新时代的社会商业市场中,AR技术也正逐渐被应用于各种商业活动…...
RHEL8中ansible的使用
编写ansible.cfg和清单文件ansible的基本用法 本章实验三台RHEL8系统(rhel801,rhel802,rhel803),其中rhel801是ansible主机 这里要确保ansible主机能够解析所有被管理的机器,这里通过配置/etc/hosts来实现…...
【1.6计算机组成与体系结构】存储系统
目录 1.层次化存储结构2.Cache2.1 Cache的介绍2.2 局部性原理2.3 Cache应用 1.层次化存储结构 由 ⬆ CPU:寄存器。 快 ⬆ Cache:按内容存取(相联存储器)。 到 ⬆内存(主存):DRAM。 慢 ⬆ 外存(辅存&#…...
TCP/UDP 协议
目录 一.TCP协议 1.介绍 2.报文格式 编辑 确认号 控制位 窗口大小 3.TCP特性 二.TCP协议的三次握手 1.tcp 三次握手的过程 三.四次挥手 2.有限状态机 四.tcp协议和udp协议的区别 五.udp协议 UDP特性 六.telnet协议 一.TCP协议 1.介绍 TCP(Transm…...
如何正确理解和使用 Golang 中 nil ?
目录 指针中的 nil 切片中的 nil map 中的 nil 通道中的 nil 函数中的 nil 接口中的 nil 避免 nil 相关问题的最佳实践 小结 在 Golang 中,nil 是一个预定义的标识符,在不同的上下文环境中有不同的含义,但通常表示“无”、“空”或“…...
IDEA新建jdk8 spring boot项目
今天新建spring boot项目发现JDK版本最低可选17。 但是目前用的最多的还是JDK8啊。 解决办法 Server URL中设置: https://start.aliyun.com/设置完成后,又可以愉快的用jdk8创建项目了。 参考 https://blog.csdn.net/imbzz/article/details/13469117…...
Qt/C++音视频开发59-使用mdk-sdk组件/原qtav作者力作/性能凶残/超级跨平台
一、前言 最近一个月一直在研究mdk-sdk音视频组件,这个组件是原qtav作者的最新力作,提供了各种各样的示例demo,不仅限于支持C,其他各种比如java/flutter/web/android等全部支持,性能上也是杠杠的,目前大概…...
智安网络|企业网络安全工具对比:云桌面与堡垒机,哪个更适合您的需求
随着云计算技术的快速发展,越来越多的企业开始采用云计算解决方案来提高效率和灵活性。在云计算环境下,云桌面和堡垒机被广泛应用于企业网络安全和办公环境中。尽管它们都有助于提升企业的安全和效率,但云桌面和堡垒机在功能和应用方面存在着…...
Git忽略已经提交的文件
原理类似于 Android修改submodule的lib包名...
MVVM和MVC以及MVP的原理以及它们的区别
MVVM、MVC 和 MVP 都是前端架构模式,它们各自有不同的原理和特点。 MVC(Model-View-Controller) 原理:MVC 将应用程序分为三个部分:模型(Model)、视图(View)和控制器&a…...
WeChatMsg: 导出微信聊天记录 | 开源日报 No.108
Mozilla-Ocho/llamafile Stars: 3.5k License: NOASSERTION llamafile 是一个开源项目,旨在通过将 lama.cpp 与 Cosmopolitan Libc 结合成一个框架,将 LLM (Large Language Models) 的复杂性折叠到单个文件可执行程序中,并使其能够在大多数…...
Python学习之复习MySQL-Day3(DQL)
目录 文章声明⭐⭐⭐让我们开始今天的学习吧!DQL简介基本查询查询多个/全部字段设置别名去除重复记录 条件查询条件查询介绍实例演示 聚合函数什么是聚合函数?常见的聚合函数实例演示 分组查询分组查询语法where 和 having 的区别实例演示 排序查询语法实…...
AI超级个体:ChatGPT与AIGC实战指南
目录 前言 一、ChatGPT在日常工作中的应用场景 1. 客户服务与支持 2. 内部沟通与协作 3. 创新与问题解决 二、巧用ChatGPT提升工作效率 1. 自动化工作流程 2. 信息整合与共享 3. 提高决策效率 三、巧用ChatGPT创造价值 1. 优化产品和服务 2. 提高员工满意度和留任率…...
SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍)
SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍) 文章目录 SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍)[TOC] 前言一、初始…...
Kafka-Kafka基本原理与集群快速搭建(实践)
Kafka单机搭建 下载Kafka Apache Download Mirrors 解压 tar -zxvf kafka_2.12-3.4.0.tgz -C /usr/local/src/software/kafkakafka内部bin目录下有个内置的zookeeper(用于单机) 启动zookeeper(在后台启动) nohup bin/zookeeper-server-start.sh conf…...
Elasticsearch 进阶(索引、类型、字段、分片、副本、集群等详细说明)-06
笔记来源:Elasticsearch Elasticsearch进阶 进阶-核心概念 索引Index 一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字…...
hive的分区表和分桶表详解
分区表 Hive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区,这样的查询效率会提高很多。 静态分区表基本语法 创建分区表 create table dept_p…...
verilog语法进阶-分布式ram
概述: FPGA的LUT查找表是用RAM设计的,所以LUT可以当成ram来使用,也并不是所有的LUT都可以当成ram来使用,sliceM的ram可以当成分布式ram来使用,而sliceL的ram只能当成rom来使用,也就是只能读,不能写&#x…...
HarmonyOS使用HTTP访问网络
HTTP数据请求 1 概述 日常生活中我们使用应用程序看新闻、发送消息等,都需要连接到互联网,从服务端获取数据。例如,新闻应用可以从新闻服务器中获取最新的热点新闻,从而给用户打造更加丰富、更加实用的体验。 那么要实现这样一种…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
