当前位置: 首页 > news >正文

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解

目录

    • 时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解
1.ICEEMDAN方法的分解效果取决于白噪声幅值权重(Nstd)和噪声添加次数(NE),因此,采用智能优化算法对这2个参数进行优化,适应度函数包括包络熵、样本熵、信息熵、排列熵。
2.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
3.附赠时间序列测试数据,可直接运行main一键出图[闪亮]

程序设计

  • 完整源码和数据获取方式私信博主回复:Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解
[x, y] = size(signal);
if x > yC = y;% number of channelsT = x;% length of the Signalsignal = signal';
elseC = x;% number of channelsT = y;% length of the Signal
end
%---------- Preparations
% Sampling Frequency
fs = 1/T;% Mirroring
f(:,1:T/2) = signal(:,T/2:-1:1);
f(:,T/2+1:3*T/2) = signal;
f(:,3*T/2+1:2*T) = signal(:,T:-1:T/2+1);
% Time Domain 0 to T (of mirrored signal)
T = size(f,2);
t = (1:T)/T;
% frequencies
freqs = t-0.5-1/T;
% Construct and center f_hat
f_hat = fftshift(fft(f,[],2),2);
f_hat_plus = f_hat;
f_hat_plus(:,1:T/2) = 0;%------------ Initialization
% Maximum number of iterations 
N = 500;
% For future generalizations: individual alpha for each mode
Alpha = alpha*ones(1,K);
% matrix keeping track of every iterant 
u_hat_plus_00 = zeros(length(freqs), C, K);
u_hat_plus = zeros(length(freqs), C, K);
omega_plus = zeros(N, K);
% initialize omegas uniformly
switch initcase 1omega_plus(1,:) = (0.5/K)*((1:K)-1);case 2omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K)));otherwiseomega_plus(1,:) = 0;
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICE…...

Linux Conda 安装 Jupyter

在Linux服务器Conda环境上安装Jupyter过程中遇到了无数的报错,特此记录。 目录 步骤一:安装Anaconda3 步骤二:配置Conda源 步骤三:安装Jupyter 安装报错:simplejson.errors.JSONDecodeError 安装报错:…...

金融众筹系统源码:适合创业孵化机构 附带完整的搭建教程

互联网技术的发展,金融众筹作为一种新型的融资方式,逐渐成为创业孵化机构的重要手段。为了满足这一需求,金融众筹系统源码就由此而生,并附带了完整的搭建教程。 以下是部分代码示例: 系统特色功能一览: 1.…...

OpenCV imencode 函数详解与应用示例

OpenCV imencode 函数详解与应用示例 介绍imencode 函数的基本信息示例代码应用场景 介绍 OpenCV是一个强大的计算机视觉库,提供了许多图像处理和分析的工具。imencode函数是其中之一,用于将图像编码为指定格式的字节流。这个函数对于图像的存储、传输和…...

持续集成交付CICD:Jenkins使用CD流水线下载Nexus制品

目录 一、实验 1.Jenkins使用CD流水线下载Nexus制品 一、实验 1.Jenkins使用CD流水线下载Nexus制品 (1)Jenkins新建CD流水线 (2)新建视图 (3)查看视图 (4)添加字符参数 &#xf…...

【C++】输入输出流 ⑩ ( 文件流 | 文件流打开方式参数 | 文件指针 | 组合打开方式 | 文件打开失败 )

文章目录 一、文件流打开方式参数1、文件流打开方式参数2、文件指针3、组合打开方式4、文件打开失败 一、文件流打开方式参数 1、文件流打开方式参数 文件流打开方式参数 : ios::in : 以只读方式打开文件 ;ios::out : 以只写方式打开文件 , 默认打开方式 , 如果文件已存在则清…...

React中的setState执行机制

我这里今天下雨了,温度一下从昨天的22度降到今天的6度,家里和学校已经下了几天雪了,还是想去玩一下的,哈哈,只能在图片里看到了。 一. setState是什么 它是React组件中用于更新状态的方法。它是类组件中的方法&#x…...

LabVIEW实时建模检测癌细胞的异常

LabVIEW实时建模检测癌细胞的异常 癌症是全球健康的主要挑战之一,每年导致许多人死亡。世界卫生组织指出,不健康的生活方式和日益严重的环境污染是癌症发生的主要原因之一。癌症的发生通常与基因突变有关,这些突变导致细胞失去正常的增长和分…...

Python卡尔曼滤波器OpenCV跟踪和预测物体的轨迹

模拟简单物体二维运动和预测位置 预测数学式 想象一下你正坐在一辆汽车里,在雾中行驶。 你几乎看不到路,但你有一个 GPS 系统可以告诉你你的速度和位置。 问题是,这个 GPS 并不完美; 它有时会产生噪音或不准确的读数。 您如何知…...

LeetCode Hot100 25.K个一组翻转链表

题目: 给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。 k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。 你不能只是单纯…...

中职网络安全应急响应—Server2228

应急响应 任务环境说明: 服务器场景:Server2228(开放链接) 用户名:root,密码:p@ssw0rd123 1. 找出被黑客修改的系统别名,并将倒数第二个别名作为Flag值提交; 通过用户名和密码登录系统 在 Linux 中,利用 “alias” 命令去查看当前系统中定义的所有别名 flag:ss …...

springboot 获取路径

PostConstructpublic void setup() {try {// jar包所在目录 /Users/mashanshanString path this.getClass().getProtectionDomain().getCodeSource().getLocation().getPath();System.out.println("path:" path); // file:/Users/mashanshan/manual-admin-0.0.1-…...

C#上位机与欧姆龙PLC的通信01----项目背景

最近,【西门庆】作为项目经理负责一个70万的北京项目,需要在工控系统集成软件开发中和欧 姆龙PLC对接,考虑项目现场情况优先想到了采用FinsTCP通讯协议,接下来就是记录如何一步步实现这些通讯过程的,希望给电气工程师&…...

SE考研真题总结(二)

接上条,今天继续更新~ SE考研真题总结(一)-CSDN博客文章浏览阅读340次,点赞6次,收藏11次。本帖开始分享考研真题中设计【软件工程】的部分,预计会出5期左右,敬请期待~https://blog.csdn.net/js…...

vue中预览pdf的方法

使用vue-pdf 备注&#xff1a;这里只介绍了一页的pdf <div class"animation-box-pdf"><pdf :src"http://xxxx" /> </div>import Pdf from vue-pdf // src可以是文件地址url&#xff0c;也可以是文件流blob&#xff08;将blob转成url&a…...

详谈前端中常用的加/密算法

本文主要详细介绍了在前端开发中常用的加/解密算法&#xff0c;以及前端如何实现。 总的来说&#xff1a;前端加密无论使用哪个加密都一样是有可能性被他人获取到相关的公钥或密钥的&#xff08;比如&#xff1a;拦截请求、查看源代码等&#xff09;&#xff0c;然后进行加密与…...

宣布全面推出适用于 macOS 的 Amazon EC2 M2 Pro Mac 实例

即日起&#xff0c;Amazon Elastic Compute Cloud (Amazon EC2) M2 Pro Mac 实例现已全面推出 (GA)。在为 Apple 平台&#xff08;例如 iOS、macOS、iPadOS、tvOS、watchOS、visionOS 和 Safari&#xff09;构建和测试应用程序时&#xff0c;这些实例的性能比现有的 M1 Mac 实例…...

【记录版】SpringBoot下Filter注册源码解读

SpringBoot TomcatEmbeddedContext Servlet ApplicationFilterChain Filter 背景&#xff1a; 在之前博客中有说明SpringBoot内嵌Web容器后&#xff0c;Filter及Servlet解析与注册流程的变化。将Filter实例封装成FilterRegistrationBean实例并添加到ServletContext后&…...

WPF的WebBrowser控件

在 WPF 中显示网页&#xff0c;你可以使用 WebBrowser 控件来实现。WebBrowser 控件是一个嵌入式的浏览器控件&#xff0c;可以加载和显示网页内容。 以下是在 WPF 中显示网页的示例代码&#xff1a; <Window x:Class"WpfApp.MainWindow"xmlns"http://sche…...

WX小程序案例(一):弹幕列表

WXML内容 <!--pages/formCase/formCase.wxml--> <!-- <text>pages/formCase/formCase.wxml</text> --> <view class"bk bkimg"><!-- <image src"/static/imgs/ceeb653ely1g9na2k0k6ug206o06oaa8.gif" mode"scal…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...