当前位置: 首页 > news >正文

R语言对医学中的自然语言(NLP)进行机器学习处理(1)

什么是自然语言(NLP),就是网络中的一些书面文本。对于医疗方面,例如医疗记录、病人反馈、医生业绩评估和社交媒体评论,可以成为帮助临床决策和提高质量的丰富数据来源。如互联网上有基于文本的数据(例如,对医疗保健提供者的社交媒体评论),这些数据我们可以直接下载,有些可以通过爬虫抓取。例如:在病人论坛上发表对疾病或药物的评论,可以将它们存储在数据库中,然后进行分析。

在这里插入图片描述
在这个之前需要了解什么是情绪分析,情绪分析是指赋予词语、短语或其他文本单位主观意义的过程。情绪可以简单地分为正面或负面,也可以与更详细的主题有关,比如某些词语所反映的情绪。简单来说就是从语言从提取患者态度或者情绪的词语,然后进行分析,比如患者对这个药物的疗效,她说好,有用,我们提取出这些关键词来进行分析。

自然语言(NLP)进行机器学习分为无监督学习和有监督学习,本期咱们先来介绍无监督学习。咱们先导入R包和数据

library(tm)
library(data.table)
library(tidytext)
library(dplyr)
library(tidyr)
library(topicmodels)
library(performanceEstimation)
library(rsample)
library(recipes)
library(parsnip)
library(workflows)
library(tune)
library(dials)
library(kernlab)
library(ggplot2)
training_data <- as.data.frame(fread("E:/r/test/drugsComTrain_raw.tsv"))

咱们先来看一下数据
在这里插入图片描述
这是一个患者对药物评价的数据,该数据集提供了患者对特定药物及相关疾病的评估,以及10星级患者评级,反映了整体患者满意度。这些数据是通过爬取在线医药评论网站获得的。公众号回复:药物评论数据,可以获得该数据,我们先来看一下数据的构成,drugName:药物名称,condition (categorical)条件类别,多指患者的一些疾病类别,review:患者对药物的评论,rating患者对药物的打分,date (date)患者评论的日期,usefulCount发现评论有用的数据,代表浏览者支持这个观点。
这个数据有16万行,非常大,为了演示方便,我们只取5000个来演示

set.seed(123)
sample <- sample(nrow(training_data),5000)
data <- training_data[sample,]
dim(data)

在这里插入图片描述
因为这是网页抓取的数据,会存在一些乱码,所以咱们在分析前先要进行数据的清洗,编写一个简单的数据清洗程序,就是一些简单的正则式小知识

cleanText <- function(rawtext) {rawtext <- gsub("&#039;", "?", rawtext)# Expand contractionsrawtext <- gsub("n?t", " not", rawtext)rawtext <- gsub("won?t", "will not", rawtext)rawtext <- gsub("wont", "will not", rawtext)rawtext <- gsub("?ll", " will", rawtext)rawtext <- gsub("can?t", "can not", rawtext)rawtext <- gsub("cant", "can not", rawtext)rawtext <- gsub("didn?t", "did not", rawtext)rawtext <- gsub("didnt", "did not", rawtext)rawtext <- gsub("?re", " are", rawtext)rawtext <- gsub("?ve", " have", rawtext)rawtext <- gsub("?d", " would", rawtext)rawtext <- gsub("?m", " am", rawtext)rawtext <- gsub("?s", "", rawtext)# Remove non-alphanumeric characters.rawtext <- gsub("[^a-zA-Z0-9 ]", " ", rawtext)# Convert all text to lower case.rawtext <- tolower(rawtext)# Stem wordsrawtext <- stemDocument(rawtext, language = "english")return(rawtext)
}

这个小程序我简单介绍一下,第一行就是就是把文字中的"&#039;"全部改成“?”,其他也是差不多的,第二行就是把"n?t"改成" not".接下来gsub("[^a-zA-Z0-9 ]", " ", rawtext)这句前面有个^,表示把没有数据和字母的字符的字符串定义为缺失。tolower(rawtext)是把数据转成小写。
写好程序后咱们运行一下

data$review <- sapply(data$review, cleanText)

在这里插入图片描述
这样数据就被清洗一遍了,接下来咱们需要使用tidytext包中的unnest_tokens函数先把评论打散,变成一个个的单词,然后把含有stop的单词去掉,再把每行重复的词去掉,最后选择大于3个字符的词

tidydata <- data %>%unnest_tokens(word, review) %>%  #将句子打散变成单个词anti_join(stop_words) %>%  #Joining with `by = join_by(word)` remove stop wordsdistinct() %>%   #去除重复filter(nchar(word) > 3)

我们看下整理后的数据,我们可以看到同一行被拆成多个词,当然数据也比原来大了很多
在这里插入图片描述
接下来咱们需要使用get_sentiments函数来对文本进行分析,它自带有很多字典咱们这次使用"bing"字典进行分析,咱们先来看下什么是"bing"字典

head(get_sentiments("bing"),20)

在这里插入图片描述
我们可以看到字典就是对应的字符串,假如匹配到abnormal 这个词,函数就会返回负面的negative,假如是abound这个词,函数就会返回正面的positive

tidydata %>%inner_join(get_sentiments("bing"))  #使用"bing"的字典进行情感分析

在这里插入图片描述
咱们看到数据很大,咱们只取其中的4种药物来分析"Levothyroxine",“Vyvanse”,“Xiidra”,“Oseltamivir”,并且计算出每种药物的评价数量和百分比

drug_polarity <- tidydata %>%inner_join(get_sentiments("bing")) %>%   #使用"bing"的字典进行情感分析filter(drugName == "Levothyroxine" |     #选定4种药物drugName == "Vyvanse" |drugName == "Xiidra" |drugName == "Oseltamivir") %>%count(sentiment, drugName) %>%           #对情感进行计数pivot_wider(names_from = sentiment,   #选择要访问的列values_from = n,           #输出列的名字values_fill = 0) %>%       #如果缺失的话默认填0mutate(polarity = positive - negative,  #评分percent_positive = positive/(positive+negative) * 100) %>%  #计算百分比arrange(desc(percent_positive))

在这里插入图片描述
上图对显示出患者对药物的一些基本反馈。
下面咱们准备开始进行无监督学习,先要建立矩阵(DTM),

drug_as_doc_dtm <- tidydata %>%count(drugName, word, sort = TRUE) %>%  #每种药物的评价词语的个数ungroup() %>% cast_dtm(drugName, word, n) %>%  #将数据帧转换为tm包中DocumentTermMatrix,TermDocumentMatrix或dfmremoveSparseTerms(0.995)

我们看一下这个矩阵

inspect(drug_as_doc_dtm)

在这里插入图片描述
建立好矩阵后主要是通过topicmodels包的LDA函数来进行无监督学习,这里的K表示你想要分成几组,control这里可以设置一个种子

lda<- LDA(drug_as_doc_dtm, k = 3,control = list(seed = 123))

接着咱们对数据进行进一步提取

top_terms_per_topic <- lda %>%tidy(matrix = "beta") %>%    #获取系数group_by(topic) %>%         #分组arrange(topic, desc(beta)) %>%    #排序slice(seq_len(10)) # Number of words to display per topic

看下提取后的数据,第一个是组别,第二个是它的名字,第三个是它的beta
在这里插入图片描述
接下来咱们可以做一些简单的可视化,加入咱们想看这些词的几率

ggplot(top_terms_per_topic, aes(x = beta, y = term, fill = term)) +geom_bar(stat = "identity", color = "black")

在这里插入图片描述
或者做个词云图

library(wordcloud)wordcloud(top_terms_per_topic$term,top_terms_per_topic$beta,scale=c(3,0.3),min.freq=-Inf,max.words=Inf,colors=brewer.pal(8,'Set1'),random.order=F,random.color=F,ordered.colors=F)

在这里插入图片描述
本期先介绍到这里,下期继续介绍有监督学习,未完待续。

参考文献:

  1. tm包文档
  2. tidytext包文档
  3. topicmodels包文档
  4. Harrison, C.J., Sidey-Gibbons, C.J. Machine learning in medicine: a practical introduction to natural language processing. BMC Med Res Methodol 21, 158 (2021).
  5. https://www.cnblogs.com/jiangxinyang/p/9358339.html
  6. https://blog.csdn.net/sinat_26917383/article/details/51547298

相关文章:

R语言对医学中的自然语言(NLP)进行机器学习处理(1)

什么是自然语言(NLP)&#xff0c;就是网络中的一些书面文本。对于医疗方面&#xff0c;例如医疗记录、病人反馈、医生业绩评估和社交媒体评论,可以成为帮助临床决策和提高质量的丰富数据来源。如互联网上有基于文本的数据(例如,对医疗保健提供者的社交媒体评论),这些数据我们可…...

什么是CI/CD?如何在PHP项目中实施CI/CD?

CI/CD&#xff08;持续集成/持续交付或持续部署&#xff09;是一种软件开发和交付方法&#xff0c;它旨在通过自动化和持续集成来提高开发速度和交付质量。以下是CI/CD的基本概念和如何在PHP项目中实施它的一般步骤&#xff1a; 持续集成&#xff08;Continuous Integration -…...

玩转Docker(四):容器指令、生命周期、资源限制、容器化支持、常用命令

文章目录 一、容器指令1.运行2.启动/停止/重启3.暂停/恢复4.删除 二、生命周期三、资源限制1.内存限额2.CPU限额3.磁盘读写带宽限额 四、cgroup和namespace五、常用命令 一、容器指令 1.运行 按用途容器大致可分为两类&#xff1a;服务类容器和工具类的容器。 服务类容器&am…...

回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)

回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 &#xff08;多指标&#xff0c;多图&#xff09;效果…...

Qt/C++视频监控安卓版/多通道显示视频画面/录像存储/视频播放安卓版/ffmpeg安卓

一、前言 随着监控行业的发展&#xff0c;越来越多的用户场景是需要在手机上查看监控&#xff0c;而之前主要的监控系统都是在PC端&#xff0c;毕竟PC端屏幕大&#xff0c;能够看到的画面多&#xff0c;解码性能也强劲。早期的手机估计性能弱鸡&#xff0c;而现在的手机性能不…...

【docker】容器使用(Nginx 示例)

查看 Docker 客户端命令选项 docker上面这三张图都是 常用命令&#xff1a; run 从映像创建并运行新容器exec 在运行的容器中执行命令ps 列出容器build 从Dockerfile构建映像pull 从注册表下载图像push 将图像上载到注册表…...

【QT】时间日期与定时器

目录 1.时间日期相关的类 2.日期时间数据与字符串之间的转换 2.1 时间、日期编辑器属性设置 2.2 日期时间数据的获取与转换为字符串 2.3 字符串转换为日期时间 3.QCaIendarWidget日历组件 3.1基本属性 3.2 公共函数 3.3 信号 4.实例程序演示时间日期与定时器的使用 …...

蓝桥杯专题-真题版含答案-【古代赌局】【古堡算式】【微生物增殖】【密码发生器】

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分…...

和鲸科技携手深圳数据交易所,“数据+数据开发者生态”赋能人工智能产业发展

信息化时代&#xff0c;数据驱动决策的重要性日益凸显。通过利用数据可以深入了解市场需求、客户行为、竞争态势等关键信息&#xff0c;从而制定更为有效的战略和决策。围绕推动数据要素产业发展&#xff0c;近日&#xff0c;深圳数据交易所&#xff08;以下简称“深数所”&…...

在MFC(Microsoft Foundation Classes)中 CreateThread函数

CreateThread是Windows API中用于创建新线程的函数。以下是对函数参数的详细解释&#xff1a; lpThreadAttributes&#xff08;可选&#xff09;&#xff1a;指向SECURITY_ATTRIBUTES结构的指针&#xff0c;用于指定线程的安全性。可以设置为NULL&#xff0c;表示使用默认安全…...

Ubuntu 常用命令之 ls 命令用法介绍

Ubuntu ls 命令用法介绍 ls是Linux系统下的一个基本命令&#xff0c;用于列出目录中的文件和子目录。它有许多选项可以用来改变列出的内容和格式。 以下是一些基本的ls命令选项 -l&#xff1a;以长格式列出文件&#xff0c;包括文件类型、权限、链接数、所有者、组、大小、最…...

【解决】Windows 11检测提示电脑不支持 TPM 2.0(注意从DTPM改为PTT)

win11升级&#xff0c;tpm不兼容 写在最前面1. 打开电脑健康状况检查2. 开启tpm3. 微星主板AMD平台开启TPM2.0解决电脑健康状况检查显示可以安装win11&#xff0c;但是系统更新里显示无法更新 写在最前面 我想在台式电脑上用win11的专注模式&#xff0c;但win10不支持 1. 打…...

ChatGPT 也宕机了?如何预防 DDOS 攻击的发生

最近&#xff0c;开发人工智能聊天机器人的公司 OpenAI 遭受了一次规模较大的分布式拒绝服务&#xff08;DDoS&#xff09;攻击&#xff0c;导致其旗下的 ChatGPT 服务在短短 12 小时内遭遇了 4 次断网&#xff0c;众多用户遭受了连接失败的问题。 这次攻击事件引起了广泛的关…...

wireshark下载安装

下载 Wireshark Download 等待下载完成 安装 双击 下面的一定垚勾选上 下图的也一定要勾选上 修改为不重启&#xff0c;不需要重启也是正常的...

如何退回chrome旧版ui界面?关闭Chrome浏览器新 UI 界面

之前启用新UI的方式 Chrome 已经很久没有进行过大的样式修改&#xff0c;但近期在稳定分支中添加了新的 flags 实验性标志&#xff0c;带来了全新的设计与外观&#xff0c;启用方式如下&#xff1a; 在 Chrome 浏览器的搜索栏中输入并访问 chrome://flags 搜索“refresh 2023…...

指针进阶篇

指针的基本概念&#xff1a; 指针是一个变量&#xff0c;对应内存中唯一的一个地址指针在32位平台下的大小是4字节&#xff0c;在64位平台下是8字节指针是有类型的&#xff0c;指针类型决定该指针的步长&#xff0c;即走一步是多长指针运算&#xff1a;指针-指针表示的是两个指…...

C语言之单链表理解与应用

其实网上有好多关于单链表理解&#xff0c;其实知乎上有一篇写的很好&#xff0c;利用图形与代码结合&#xff0c;我觉得写的很好&#xff0c;大家也可以去查一下&#xff0c;每个人都有自己的想法与理解&#xff0c;这里主要看单链表概念&#xff0c;应用场景&#xff0c;举例…...

SpringBoot对PDF进行模板内容填充、电子签名合并

1. 依赖引入–这里只包含额外引入的包 原有项目包不含括在内 <!-- pdf编辑相关--> <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.13.3</version> </dependency><de…...

Vue3快速上手笔记

Vue3快速上手 1.Vue3简介 2020年9月18日&#xff0c;Vue.js发布3.0版本&#xff0c;代号&#xff1a;One Piece&#xff08;海贼王&#xff09;耗时2年多、2600次提交、30个RFC、600次PR、99位贡献者github上的tags地址&#xff1a;https://github.com/vuejs/vue-next/release…...

LLM中的Prompt提示

简介 在LLM中&#xff0c;prompt&#xff08;提示&#xff09;是一个预先设定的条件&#xff0c;它可以限制模型自由发散&#xff0c;而是围绕提示内容进行展开。输入中添加prompt&#xff0c;可以强制模型关注特定的信息&#xff0c;从而提高模型在特定任务上的表现。 结构 …...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...