回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)
回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)
目录
- 回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览


基本介绍
CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 Matlab程序
1.多变量输入单输出 效果如图所示 算法用的人少~
2.直接替换Excel数据即可用 适合新手小白~
3.附赠案例数据 直接运行main一键出图~
3.直接替换Excel数据即可用,注释清晰,适合新手小白。
4.附赠示例数据,可直接运行。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)
回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图) 目录 回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)效果…...
Qt/C++视频监控安卓版/多通道显示视频画面/录像存储/视频播放安卓版/ffmpeg安卓
一、前言 随着监控行业的发展,越来越多的用户场景是需要在手机上查看监控,而之前主要的监控系统都是在PC端,毕竟PC端屏幕大,能够看到的画面多,解码性能也强劲。早期的手机估计性能弱鸡,而现在的手机性能不…...
【docker】容器使用(Nginx 示例)
查看 Docker 客户端命令选项 docker上面这三张图都是 常用命令: run 从映像创建并运行新容器exec 在运行的容器中执行命令ps 列出容器build 从Dockerfile构建映像pull 从注册表下载图像push 将图像上载到注册表…...
【QT】时间日期与定时器
目录 1.时间日期相关的类 2.日期时间数据与字符串之间的转换 2.1 时间、日期编辑器属性设置 2.2 日期时间数据的获取与转换为字符串 2.3 字符串转换为日期时间 3.QCaIendarWidget日历组件 3.1基本属性 3.2 公共函数 3.3 信号 4.实例程序演示时间日期与定时器的使用 …...
蓝桥杯专题-真题版含答案-【古代赌局】【古堡算式】【微生物增殖】【密码发生器】
Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分…...
和鲸科技携手深圳数据交易所,“数据+数据开发者生态”赋能人工智能产业发展
信息化时代,数据驱动决策的重要性日益凸显。通过利用数据可以深入了解市场需求、客户行为、竞争态势等关键信息,从而制定更为有效的战略和决策。围绕推动数据要素产业发展,近日,深圳数据交易所(以下简称“深数所”&…...
在MFC(Microsoft Foundation Classes)中 CreateThread函数
CreateThread是Windows API中用于创建新线程的函数。以下是对函数参数的详细解释: lpThreadAttributes(可选):指向SECURITY_ATTRIBUTES结构的指针,用于指定线程的安全性。可以设置为NULL,表示使用默认安全…...
Ubuntu 常用命令之 ls 命令用法介绍
Ubuntu ls 命令用法介绍 ls是Linux系统下的一个基本命令,用于列出目录中的文件和子目录。它有许多选项可以用来改变列出的内容和格式。 以下是一些基本的ls命令选项 -l:以长格式列出文件,包括文件类型、权限、链接数、所有者、组、大小、最…...
【解决】Windows 11检测提示电脑不支持 TPM 2.0(注意从DTPM改为PTT)
win11升级,tpm不兼容 写在最前面1. 打开电脑健康状况检查2. 开启tpm3. 微星主板AMD平台开启TPM2.0解决电脑健康状况检查显示可以安装win11,但是系统更新里显示无法更新 写在最前面 我想在台式电脑上用win11的专注模式,但win10不支持 1. 打…...
ChatGPT 也宕机了?如何预防 DDOS 攻击的发生
最近,开发人工智能聊天机器人的公司 OpenAI 遭受了一次规模较大的分布式拒绝服务(DDoS)攻击,导致其旗下的 ChatGPT 服务在短短 12 小时内遭遇了 4 次断网,众多用户遭受了连接失败的问题。 这次攻击事件引起了广泛的关…...
wireshark下载安装
下载 Wireshark Download 等待下载完成 安装 双击 下面的一定垚勾选上 下图的也一定要勾选上 修改为不重启,不需要重启也是正常的...
如何退回chrome旧版ui界面?关闭Chrome浏览器新 UI 界面
之前启用新UI的方式 Chrome 已经很久没有进行过大的样式修改,但近期在稳定分支中添加了新的 flags 实验性标志,带来了全新的设计与外观,启用方式如下: 在 Chrome 浏览器的搜索栏中输入并访问 chrome://flags 搜索“refresh 2023…...
指针进阶篇
指针的基本概念: 指针是一个变量,对应内存中唯一的一个地址指针在32位平台下的大小是4字节,在64位平台下是8字节指针是有类型的,指针类型决定该指针的步长,即走一步是多长指针运算:指针-指针表示的是两个指…...
C语言之单链表理解与应用
其实网上有好多关于单链表理解,其实知乎上有一篇写的很好,利用图形与代码结合,我觉得写的很好,大家也可以去查一下,每个人都有自己的想法与理解,这里主要看单链表概念,应用场景,举例…...
SpringBoot对PDF进行模板内容填充、电子签名合并
1. 依赖引入–这里只包含额外引入的包 原有项目包不含括在内 <!-- pdf编辑相关--> <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.13.3</version> </dependency><de…...
Vue3快速上手笔记
Vue3快速上手 1.Vue3简介 2020年9月18日,Vue.js发布3.0版本,代号:One Piece(海贼王)耗时2年多、2600次提交、30个RFC、600次PR、99位贡献者github上的tags地址:https://github.com/vuejs/vue-next/release…...
LLM中的Prompt提示
简介 在LLM中,prompt(提示)是一个预先设定的条件,它可以限制模型自由发散,而是围绕提示内容进行展开。输入中添加prompt,可以强制模型关注特定的信息,从而提高模型在特定任务上的表现。 结构 …...
【算法Hot100系列】最长回文子串
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
KaiwuDB × 国网山东综能 | 分布式储能云边端一体化项目建设
项目背景 济南韩家峪村首个高光伏渗透率台区示范项目因其所处地理位置拥有丰富的光照资源,该区域住户 80% 以上的屋顶都安装了光伏板。仅 2022 年全年,光伏发电总量达到了百万千瓦时。 大量分布式光伏并网,在输出清洁电力的同时,…...
elasticsearch查询出现Limit of total fields 1000 has been exceeded
项目场景: 在项目中使用elasticsearch保存日志等相关数据,查询页面查询这些日志数据 问题描述 提示:这里描述项目中遇到的问题: 今天在检查日志数据时,发现数据出不来,检查后端日志,发现一直…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
