当前位置: 首页 > news >正文

Unity中Shader语义的理解

前言

        以下内容主要是个人理解,如有错误,欢迎严厉批评指正。

一、语义的形式在Shader中是必要的吗?

        不是必要的。

        使用HLSL和CG语言来编写Shader需要语义,使用GLSL编写Shader不需要。

二、语义的意义?

  • 语义是什么?        

        语义实际上是特定数据存储位置的标记。

  • vertex对应方法的输入结构体中的语义

        通常在  vertex  对应的方法(就是通常命名为 vert 或者 UnlitPassVertex 之类的那个方法)中使用的输入结构体中的语义与内容之间是严格相关的,参考下面的代码中的结构体:

struct attribute
{float3 posOS:POSITION;float2 uv:TEXCOORD0;
};

        在HLSL语言环境下,可以认为应用程序向GPU传递数据时,事先约定好在POSITION语义所对应的存储位置是存放模型基于自身坐标的顶点的位置信息。类似的,TEXCOORD0这个语义所对应的存储位置也是约定好存放模型默认的uv信息的。当一个结构体定义的目的是向  vertex  对应的方法中传递信息的时候,所有变量对于这些约定必须严格遵循,否则取不到正确的数据!

  • 从vertex对应的方法向fragment对应的方法传递内容的结构体中的语义

        如果定义的结构体的用途是将数据从vertex对应的方法处理好再传递给fragment对应的方法(就是通常命名为  frag 或者 UnlitPassFragment 的那个方法),就只有一个SV_POSITION语义是约定好的,这个语义对应的是顶点在裁剪空间中的位置。其它语义并没有约定,所谓语义只对应了一个存储位置,比如下面代码中的uv使用了语义TEXCOORD0,其实你使用NORMAL啥的也行。

struct Varying
{float4 posCS:SV_POSITION;float2 uv:TEXCOORD0;
};
  • fragment对应的方法的返回值的语义

        对于fragment对应的方法的返回值, SV_TARGET 的语义约定也是必须的,因为程序后续要在SV_TARGET所对应的存储位置取值。示例代码如下:

float4 frag(Varying IN):SV_TARGET
{float4 texColor = SAMPLE_TEXTURE2D(_MainTex,sampler_MainTex,IN.uv);return texColor * _MainColor;
}

常用语义:

        POSITION           表示这个变量用于存储模型基于自身坐标的顶点的位置信息。

        SV_POSITION    指定顶点的位置,通常用于顶点着色器输入。

        SV_TARGET       指定像素颜色输出的目标缓冲区,通常用于像素着色器输出。

        TEXCOORD        指定纹理坐标,用于从纹理中采样颜色。

        COLOR                指定顶点或像素的颜色。

        NORMAL             指定顶点或像素的法线向量。

        TANGENT           指定顶点或像素的切线向量。

        BINORMAL         指定顶点或像素的副法线向量。

        DEPTH                深度值

相关文章:

Unity中Shader语义的理解

前言 以下内容主要是个人理解,如有错误,欢迎严厉批评指正。 一、语义的形式在Shader中是必要的吗? 不是必要的。 使用HLSL和CG语言来编写Shader需要语义,使用GLSL编写Shader不需要。 二、语义的意义? 语义是什么&…...

Flink系列之:Top-N

Flink系列之:Top-N 一、TOP-N二、无排名输出优化 一、TOP-N 适用于流、批Top-N 查询可以根据指定列排序后获得前 N 个最小或最大值。最小值和最大值集都被认为是Top-N查询。在需要从批表或流表中仅显示 N 个底部或 N 个顶部记录时,Top-N 查询是非常有用…...

CSS的三大特性(层叠性、继承性、优先级---------很重要)

CSS 有三个非常重要的三个特性:层叠性、继承性、优先级。 层叠性 场景:相同选择器给设置相同的样式,此时一个样式就会覆盖(层叠)另一个冲突的样式。层叠性主要解决样式冲突 的问题 原则:  样式冲突&am…...

飞天使-docker知识点10-docker总结

文章目录 docker 知识点汇总docker chatgpt解释学习路线cmd和 ENTRYPOINT 的区别harbor安装漏洞扫描 docker 知识点汇总 docker 基础用法 docker 镜像基础用法 docker 容器网络 docker 存储卷 dockerfile docker仓库 harbor docker-compose docker chatgpt解释学习路线 学习…...

旅游管理虚拟情景实训教学系统演示

首先,虚拟情景实训教学系统为旅游管理专业的学生提供了一个全新的实践平台。在传统的旅游管理教学中,学生往往只能通过理论学习来了解相关知识,而无法亲身实践。虚拟情景实训教学系统则可以通过模拟真实的旅游场景,让学生能够亲身…...

Linux Shell——输入输出命令详解

Shell 输入输出 1. read2. echo3. printf 总结 最近学习了shell相关语法,顺便总结一下关于shell的输入输出命令read和echo、printf。 1. read shell的输入命令,可以从标准控制台中读取一行,并把输入行中的每个字段赋值给指定的变量 可以看到…...

MFC 第一个窗口程序

目录 一、新建Windows桌面应用程序,空项目 二、修改项目属性 三、编写程序 一、新建Windows桌面应用程序,空项目 创建MFCBase.cpp,整个项目很干净 二、修改项目属性 使用多字节编码 使用MFC库 三、编写程序 需要包含 afxwin.h 文件&…...

SQL语句的执行顺序怎么理解?

SQL语句的执行顺序怎么理解? 我们常常会被SQL其书写顺序和执行顺序之间的差异所迷惑。理解这两者的区别,对于编写高效、可靠的SQL代码至关重要。今天,让我们用一些生动的例子和场景来深入探讨SQL的执行顺序。 一、书写顺序 VS 执行顺序 SQ…...

js解析.shp文件

效果图 原理与源码 本文采用的是shapefile.js工具 这里是他的npm地址 https://www.npmjs.com/package/shapefile 这是他的unpkg地址,可以点开查看源码 https://unpkg.com/shapefile0.6.6/dist/shapefile.js 这个最关键的核心问题是如何用这个工具,网上…...

关于“Python”的核心知识点整理大全25

目录 10.3.4 else 代码块、 10.3.5 处理 FileNotFoundError 异常 alice.py 在这个示例中,try代码块引发FileNotFoundError异常,因此Python找出与该错误匹配的 except代码块,并运行其中的代码。最终的结果是显示一条友好的错误消息&#x…...

代码随想录刷题题Day15

刷题的第十五天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀 刷题语言:C Day15 任务 ● 513.找树左下角的值 ● 112. 路径总和 113.路径总和ii ● 106.从中序与后序遍历序列构造二叉树 105.从前序与中序遍历…...

软件设计师——信息安全(一)

📑前言 本文主要是【信息安全】——软件设计师——信息安全的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 &#x1f304…...

git必须掌握:git远程变动怎么解决

如何已经指定了选择分支 那下面的分支名称可以省略 如果远程分支存在变动,通常 git 推送的流程如下: 首先,使用 git fetch 命令从远程仓库获取最新的分支信息和变动。 git fetch然后,可以使用 git merge 或者 git rebase 命令进…...

Python里的时间模块

time 模块 时间表示方式 时间戳 timestamp:表示的是从 1970 年1月1日 00:00:00 开始按秒计算的偏移量UTC(Coordinated Universal Time, 世界协调时)亦即格林威治天文时间,世界标准时间。在中国为 UTC+8 DST(Daylight Saving Time) 即夏令时;结构化时间(struct_time): …...

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测 目录 SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-CNN-GRU-selfAttention灰狼算法优化卷积门控循环…...

C#学习相关系列之自定义遍历器

在C#中,自定义遍历器需要实现IEnumerable接口和IEnumerator接口。其中,IEnumerable接口包含一个GetEnumerator方法,该方法返回一个IEnumerator接口的实例,而IEnumerator接口包含Current、MoveNext和Reset方法。 IEnumerable&#…...

WPS没保存关闭了怎么恢复数据?3个方法,完成数据恢复!

“我今天在使用WPS时,突然有点急事出去了一趟,但是我忘记保存文档了,回来之后发现电脑自动关机了,我的文档也没了!这可怎么办呢?有什么办法可以找回这些数据吗?” 在快节奏的工作中,…...

数据结构和算法-最小生成树(prim和krusakal)和最短路径问题(BFS和dijkastra和floyd)

文章目录 最小生成树总览生成树广度优先生成树深度优先生成树最小生成树Prim算法Kruskal算法Prim vs KrusakalPrim的实现Kruskal的实现 小结 最短路径问题单源最短路径问题BFS求无权图的单源最短路径小结Dijkastra算法算法时间复杂度不适用情况 每一对顶点的最短路径问题Floyd算…...

响应者链概述

响应者链 iOS事件的3大类型 Touch Events(触摸事件)Motion Events(运动事件,比如重力感应和摇一摇等)Remote Events(远程事件,比如用耳机上得按键来控制手机) 触摸事件 处理触摸事件的两个步骤 寻找事件的最佳响应者事件的响应在响应链中的传递 寻…...

ShenYu网关Http服务探活解析

文章目录 网关端服务探活admin端服务探活 Shenyu HTTP服务探活是一种用于检测HTTP服务是否正常运行的机制。它通过建立Socket连接来判断服务是否可用。当服务不可用时,将服务从可用列表中移除。 网关端服务探活 以divide插件为例,看下divide插件是如何获…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

什么是VR全景技术

VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...