当前位置: 首页 > news >正文

拓扑排序实现循环依赖判断 | 京东云技术团队

本文记录如何通过拓扑排序,实现循环依赖判断

前言

一般提到循环依赖,首先想到的就是Spring框架提供的Bean的循环依赖检测,相关文档可参考:

https://blog.csdn.net/cristianoxm/article/details/113246104

本文方案脱离Spring Bean的管理,通过算法实现的方式,完成对象循环依赖的判断,涉及的知识点包括:邻接矩阵图、拓扑排序、循环依赖。本文会着重讲解技术实现,具体算法原理不再复述

概念释义

1. 什么是邻接矩阵?

这里要总结的邻接矩阵是关于图的邻接矩阵;图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图;一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息;

图分为有向图和无向图,其对应的邻接矩阵也不相同,无向图的邻接矩阵是一个对称矩阵,就是一个对称的二位数组,a[i][j] = a[j][i];
邻接矩阵可以清楚的知道图的任意两个顶点是否有边;方便计算任意顶点的度(包括有向图的出度和入度);可以直观的看出任意顶点的邻接点;

本案例中,有向邻接矩阵图为进行拓扑排序的必要条件之一,其次为有向邻接矩阵图每个顶点的入度

2. 邻接矩阵的存储结构?

vexs[MAXVEX]这是顶点表;

arc[MAXVEX][MAXVEX]这是邻接矩阵图,也是存储每条边信息的二维数组。数组的索引是边的两个顶点,数组的数据是边的权值;

numVertexes, numEdges分别为图的顶点数和边数。

3. 有向邻接矩阵图顶点的入度?

在有向图中,箭头是具有方向的,从一个顶点指向另一个顶点,这样一来,每个顶点被指向的箭头个数,就是它的入度。从这个顶点指出去的箭头个数,就是它的出度

邻接矩阵的行号即代表箭头的出发结点,列号是箭头的指向结点,所以矩阵中同一行为1的表示有从第i个结点指向第j个结点这样一条边,而在同列为1就代表第j个结点被第i个结点指向,因此要求顶点的入度或出度,只需要判断同列为1的个数或同行为1的个数

4. 什么是拓扑排序?

拓扑排序的要素:
1.有向无环图;
2.序列里的每一个点只能出现一次;
3.任何一对 u 和 v ,u 总在 v 之前(这里的两个字母分别表示的是一条线段的两个端点,u 表示起点,v 表示终点);

根据拓扑排序的要素,可通过其有向无环来判断对象依赖是否存在循环。若对象组成的图可完成拓扑排序,则该对象图不存在环,即对象间不存在循环依赖。

拓扑排序除了通过有向邻接矩阵图实现外,还可以通过深度优先搜索(DFS)来实现。本案例中仅讲解前者。

5. 什么是循环依赖?

简单解释如下,若存在两个对象,若A创建需要B,B创建需要A,这两个对象间互相依赖,就构成了最简单的循环依赖关系。

编程示例

1. 对象实体

@Builder
@NoArgsConstructor
@AllArgsConstructor
@Getter
@Setter
@ToString
public class RelationVo implements Serializable {/*** 唯一标识*/private String uniqueKey;/*** 关联唯一标识集合*/private List combinedUniqueKeys;}

2. 对象集合转换为有向邻接矩阵图

    /*** 将List集合转换为邻接矩阵图的二维数组形式** @param sourceList* @return*/public static int[][] listToAdjacencyMatrixDiagram(List sourceList) {List distinctRelationVoList = new ArrayList(sourceList);List keyCollect = distinctRelationVoList.stream().map(RelationVo::getUniqueKey).collect(Collectors.toList());for (RelationVo vo : sourceList) {vo.getCombinedUniqueKeys().forEach(child -> {if (!keyCollect.contains(child)) {// 若叶子节点不在集合中,补充List集合中单独叶子节点,目的是完成提供邻接矩阵图计算的入参keyCollect.add(child);RelationVo build = RelationVo.builder().uniqueKey(child).build();distinctRelationVoList.add(build);}});}// 顶点数:对象中出现的全部元素总数int vertexNum = keyCollect.size();/** 初始化邻接矩阵图的边的二维数组,1表示有边 0表示无边 权重均为1* 其中数组下标为边的两个顶点,数组值为对象边的权值(权值=是否有边*权重)*/int[][] edges = new int[vertexNum][vertexNum];// 计算邻接矩阵图for (int i = 0; i < vertexNum; i++) {RelationVo colVo = distinctRelationVoList.get(i);List colUniqueKeys = colVo.getCombinedUniqueKeys();for (int j = 0; j < vertexNum; j++) {RelationVo rowVo = distinctRelationVoList.get(j);String rowVertex = rowVo.getUniqueKey();if (CollUtil.isNotEmpty(colUniqueKeys)) {if (colUniqueKeys.contains(rowVertex)) {edges[i][j] = 1;} else {edges[i][j] = 0;}}}}return edges;}

3. 计算邻接矩阵图顶点的入度

     /*** 返回给出图每个顶点的入度值** @param adjMatrix 给出图的邻接矩阵值* @return*/public static int[] getSource(int[][] adjMatrix) {int len = adjMatrix[0].length;int[] source = new int[len];for (int i = 0; i < len; i++) {// 若邻接矩阵中第i列含有m个1,则在该列的节点就包含m个入度,即source[i] = mint count = 0;for (int j = 0; j < len; j++) {if (adjMatrix[j][i] == 1) {count++;}}source[i] = count;}return source;}

4. 对邻接矩阵图进行拓扑排序

    /*** 拓扑排序,返回给出图的拓扑排序序列* 拓扑排序基本思想:* 方法1:基于减治法:寻找图中入度为0的顶点作为即将遍历的顶点,遍历完后,将此顶点从图中删除* 若结果集长度等于图的顶点数,说明无环;若小于图的顶点数,说明存在环** @param adjMatrix 给出图的邻接矩阵值* @param source    给出图的每个顶点的入度值* @return*/public static List topologySort(int[][] adjMatrix, int[] source) {// 给出图的顶点个数int len = source.length;// 定义最终返回路径字符数组List result = new ArrayList(len);// 获取入度为0的顶点下标int vertexFound = findInDegreeZero(source);while (vertexFound != -1) {result.add(vertexFound);// 代表第i个顶点已被遍历source[vertexFound] = -1;for (int j = 0; j < adjMatrix[0].length; j++) {if (adjMatrix[vertexFound][j] == 1) {// 第j个顶点的入度减1source[j] -= 1;}}vertexFound = findInDegreeZero(source);}//输出拓扑排序的结果return result;}/*** 找到入度为0的点,如果存在入度为0的点,则返回这个点;如果不存在,则返回-1** @param source 给出图的每个顶点的入度值* @return*/public static int findInDegreeZero(int[] source) {for (int i = 0; i < source.length; i++) {if (source[i] == 0) {return i;}}return -1;}

5. 检查集合是否存在循环依赖

    /*** 检查集合是否存在循环依赖** @param itemList*/public static void checkCircularDependency(List itemList) throws Exception {if (CollUtil.isEmpty(itemList)) {return;}// 计算邻接矩阵图的二维数组int[][] edges = listToAdjacencyMatrixDiagram(itemList);// 计算邻接矩阵图每个顶点的入度值int[] source = getSource(edges);// 拓扑排序得到拓扑序列List topologySort = topologySort(edges, source);if (source.length == topologySort.size()) {// 无循环依赖return;} else {// 序列集合与顶点集合大小不一致,存在循环依赖throw new Exception("当前险种关系信息存在循环依赖,请检查");}}

单测用例

1. 测试物料-无循环依赖

示例JSON Array结构(可完成拓扑排序):
[{"uniqueKey":"A","combinedUniqueKeys":["C","D","E"]
},
{"uniqueKey":"B","combinedUniqueKeys":["D","E"]
},
{"uniqueKey":"D","combinedUniqueKeys":["C"]
}
]

2. 测试物料-存在循环依赖

示例JSON Array结构(不可完成拓扑排序):
[{"uniqueKey":"A","combinedUniqueKeys":["C","D","E"]
},
{"uniqueKey":"B","combinedUniqueKeys":["D","E"]
},
{"uniqueKey":"D","combinedUniqueKeys":["C"]
},
{"uniqueKey":"C","combinedUniqueKeys":["B"]
}
]

3. 单测示例

@Slf4j
public class CircularDependencyTest {/*** 针对集合信息判断该集合是否存在循环依赖*/@Testvoid testCircularDependencyList() throws Exception {String paramInfo = "[{\"uniqueKey\":\"A\",\"combinedUniqueKeys\":[\"C\",\"D\",\"E\"]},{\"uniqueKey\":\"B\",\"combinedUniqueKeys\":[\"D\",\"E\"]},{\"uniqueKey\":\"D\",\"combinedUniqueKeys\":[\"C\"]}]";// 序列化List list = JSONArray.parseArray(paramInfo, RelationVo.class);TopologicalSortingUtil.checkCircularDependency(list);}
}

作者:京东保险 侯亚东

来源:京东云开发者社区 转载请注明来源

相关文章:

拓扑排序实现循环依赖判断 | 京东云技术团队

本文记录如何通过拓扑排序&#xff0c;实现循环依赖判断 前言 一般提到循环依赖&#xff0c;首先想到的就是Spring框架提供的Bean的循环依赖检测&#xff0c;相关文档可参考&#xff1a; https://blog.csdn.net/cristianoxm/article/details/113246104 本文方案脱离Spring Be…...

Java的NIO工作机制

文章目录 1. 问题引入2. NIO的工作方式3. Buffer的工作方式4. NIO数据访问方式 1. 问题引入 在网络通信中&#xff0c;当连接已经建立成功&#xff0c;服务端和客户端都会拥有一个Socket实例&#xff0c;每个Socket实例都有一个InputStream和OutputStream&#xff0c;并通过这…...

一个简单的光线追踪渲染器

前言 本文参照自raytracing in one weekend教程&#xff0c;地址为&#xff1a;https://raytracing.github.io/books/RayTracingInOneWeekend.html 什么是光线追踪&#xff1f; 光线追踪模拟现实中的成像原理&#xff0c;通过模拟一条条直线在场景内反射折射&#xff0c;最终…...

C++学习笔记(十二)------is_a关系(继承关系)

你好&#xff0c;这里是争做图书馆扫地僧的小白。 个人主页&#xff1a;争做图书馆扫地僧的小白_-CSDN博客 目标&#xff1a;希望通过学习技术&#xff0c;期待着改变世界。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 文章目录 前言 一、继承关系…...

DC电源模块的设计与制造技术创新

BOSHIDA DC电源模块的设计与制造技术创新 DC电源模块的设计与制造技术创新主要涉及以下几个方面&#xff1a; 1. 高效率设计&#xff1a;传统的DC电源模块存在能量转换损耗较大的问题&#xff0c;技术创新可通过采用高效率的电路拓扑结构、使用高性能的功率开关器件和优化控制…...

Sketch for Mac:实现你的创意绘图梦想的矢量绘图软件

随着数字时代的到来&#xff0c;矢量绘图软件成为了广告设计、插画创作和UI设计等领域中必不可少的工具。在众多矢量绘图软件中&#xff0c;Sketch for Mac&#xff08;矢量绘图软件&#xff09;以其强大的功能和简洁的界面脱颖而出&#xff0c;成为了众多设计师的首选。 Sket…...

ReactNative0.73发布,架构升级与更好的调试体验

这次更新包含了多种提升开发体验的改进&#xff0c;包括&#xff1a; 更流畅的调试体验: 通过 Hermes 引擎调试支持、控制台日志历史记录和实验性调试器&#xff0c;让调试过程更加高效顺畅。稳定的符号链接支持: 简化您的开发工作流程&#xff0c;轻松将文件或目录链接到其他…...

SVN忽略文件的两种方式

当使用版本管理工具时&#xff0c;提交到代码库的文档我们不希望存在把一些临时文件也推送到仓库中&#xff0c;这样就需要用到忽略文件。SVN的忽略相比于GIT稍显麻烦&#xff0c;GIT只需要在.gitignore添加忽略规则即可。而SVN有两种忽略方式&#xff0c;一个是全局设置&#…...

手写VUE后台管理系统10 - 封装Axios实现异常统一处理

目录 前后端交互约定安装创建Axios实例拦截器封装请求方法业务异常处理 axios 是一个易用、简洁且高效的http库 axios 中文文档&#xff1a;http://www.axios-js.com/zh-cn/docs/ 前后端交互约定 在本项目中&#xff0c;前后端交互统一使用 application/json;charsetUTF-8 的请…...

JavaScript装饰者模式

JavaScript装饰者模式 1 什么是装饰者模式2 模拟装饰者模式3 JavaScript的装饰者4 装饰函数5 AOP装饰函数6 示例&#xff1a;数据统计上报 1 什么是装饰者模式 在程序开发中&#xff0c;许多时候都我们并不希望某个类天生就非常庞大&#xff0c;一次性包含许多职责。那么我们就…...

C++学习笔记01

01.C概述&#xff08;了解&#xff09; c语言在c语言的基础上添加了面向对象编程和泛型编程的支持。 02.第一个程序helloworld&#xff08;掌握&#xff09; #define _CRT_SECURE_NO_WARNINGS #include<iostream> using namespace std;//标准命名空间int main() {//co…...

【UE5】初识MetaHuman 创建虚拟角色

步骤 在UE5工程中启用“Quixel Bridge”插件 打开“Quixel Bridge” 点击“MetaHumans-》MetaHuman Presets UE5” 点击“START MHC” 在弹出的网页中选择一个虚幻引擎版本&#xff0c;然后点击“启动 MetaHuman Creator” 等待一段时间后&#xff0c;在如下页面点击选择一个人…...

物流实时数仓:数仓搭建(DWD)一

系列文章目录 物流实时数仓&#xff1a;采集通道搭建 物流实时数仓&#xff1a;数仓搭建 物流实时数仓&#xff1a;数仓搭建&#xff08;DIM&#xff09; 物流实时数仓&#xff1a;数仓搭建&#xff08;DWD&#xff09;一 文章目录 系列文章目录前言一、文件编写1.目录创建2.b…...

MATLAB安装

亲自验证有效&#xff0c;多谢这位网友的分享&#xff1a; https://blog.csdn.net/xiajinbiaolove/article/details/88907232...

C语言——预处理详解(#define用法+注意事项)

#define 语法规定 #define定义标识符 语法: #define name stuff #define例子 #include<stdio.h> #define A 100 #define STR "abc" #define FOR for(;;)int main() {printf("%d\n", A);printf("%s\n", STR);FOR;return 0; } 运行结果…...

Linux(23):Linux 核心编译与管理

编译前的任务&#xff1a;认识核心与取得核心原始码 Linux 其实指的是核心。这个【核心(kernel)】是整个操作系统的最底层&#xff0c;他负责了整个硬件的驱动&#xff0c;以及提供各种系统所需的核心功能&#xff0c;包括防火墙机制、是否支持 LVM 或 Quota 等文件系统等等&a…...

Oracle RAC环境下redo log 文件的扩容

环境&#xff1a; 有一个2节点RAC每一个节点2个logfile group每一个group含2个member每一个member的大小为200M 目标&#xff1a;将每一个member的大小有200M扩充到1G。 先来看下redo log的配置&#xff1a; SQL> select * from v$log;GROUP# THREAD# SEQUENCE# …...

Java入门学习笔记一

一、Java语言环境搭建 1、JAVA语言的跨平台原理 1.1、什么是跨平台性&#xff1f; 跨平台就是说&#xff0c;同一个软件可以在不同的操作系统&#xff08;例如&#xff1a;Windows、Linux、mad&#xff09;上执行&#xff0c;而不需要对软件做任务处理。即通过Java语言编写的…...

分布式块存储 ZBS 的自主研发之旅|元数据管理

重点内容 元数据管理十分重要&#xff0c;犹如整个存储系统的“大黄页”&#xff0c;如果元数据操作出现性能瓶颈&#xff0c;将严重影响存储系统的整体性能。如何提升元数据处理速度与高可用是元数据管理的挑战之一。SmartX 分布式存储 ZBS 采用 Log Replication 的机制&…...

六大设计原则

六大设计原则 1、单一职责原则 一个类或者模块只负责完成一个职责或者功能。 2、开放封闭原则 规定软件中的对象、类、模块和函数对扩展应该是开放的&#xff0c;对于修改应该是封闭的。用抽象定义结构&#xff0c;用具体实现扩展细节。 3、里氏替换原则 如果S是T的子类型…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...