当前位置: 首页 > news >正文

电子技术——CMOS 逻辑门电路

电子技术——CMOS 逻辑门电路

在本节我们介绍如何使用CMOS电路实现组合逻辑函数。在组合电路中,电路是瞬时发生的,也就是电路的输出之和当前的输入有关,并且电路是无记忆的也没有反馈。组合电路被大量的使用在当今的数字逻辑系统中。

晶体管的开关模型

CMOS数字电路使用NMOS和PMOS晶体管作为开关使用。之前,我们知道,MOS可以工作在三极管区(相当于开关闭合),也可工作在截止区(相当于开关断开)。

特别的,当一个NMOS作为闭合的开关的时候,此时栅极电压处于高电压,相当于一个从漏极到源极直接相当小的一个电阻 RonR_{on}RonrDSr_{DS}rDS ,通常处在高电压 VDDV_{DD}VDD 状态,表示逻辑1。相反,当栅极为低电压的时候,此时MOS截止,表示逻辑0,没有电流流过MOS,如图:

晶体管的开关模型
而PMOS则工作在相反的状态,栅极高电压,MOS管截止,栅极低电压,MOS管导通,如图:

晶体管的开关模型
我们观察到MOS管的栅极通常是逻辑控制输入节点,通常作为逻辑门的输入端。

CMOS反相器

在了解MOS开关的工作方式之后,先让我们制作一个反相器。正如其名,反相器可以逆转输入的逻辑,即输入0输出1,反之亦然。因此该功能可以使用布尔函数表示为:

Y=X‾Y = \overline{X} Y=X

其抽象电路模型和实现电路如图所示:

CMOS反相器
它由一对CMOS组成,栅极相连,作为输入端 XXX ,漏极相连作为输出端 YYY 。当 X=1X=1X=1 的时候,即 VX=VDDV_X = V_{DD}VX=VDD ,此时PMOS截止,而NMOS导通,输出 Y=0Y = 0Y=0 。当 X=0X=0X=0 的时候,PMOS导通而NMOS截止,此时输出 Y=1Y=1Y=1

CMOS逻辑门的一般结构

由上面的反相器我们能总结出CMOS逻辑门的一般结构,反相器由一个NMOS 下拉晶体管 和一个PMOS 上拉晶体管 组成。CMOS逻辑门由两个网络组成:一是 下拉网络PDN 由NMOS组成 ,二是 上拉网络PUN 由PMOS组成。如图:

CMOS逻辑门的一般结构
这两个网络都受到输入变量的控制,做出相反的行为,上图是一个三变量输入的逻辑门,当输入变量满足PDN条件的时候,此时PDN网络导通,而PUN网络截止,输出 Y=0Y=0Y=0 ,反之亦然。

因此,我们可以根据不同的PDN和PUN的实现,来实现与门、或门等一些基本的门电路,下图是一些PDN网络的例子:

PDN
在图(a)我们发现当 A=1A=1A=1 的时候, QAQ_AQA 导通此时 Y=0Y = 0Y=0 ,同样的对于 B=1B = 1B=1QBQ_BQB 导通此时 Y=0Y = 0Y=0 ,因此图(a)是一个或门的PDN实现,可以表示为:

Y‾=A+B\overline{Y} = A + B Y=A+B

或是:

Y=A+B‾Y = \overline{A + B} Y=A+B

图(b)必须两个NMOS全部导通才能输出,是一个与门结构,可以表示为:

Y‾=AB\overline{Y} = AB Y=AB

或是:

Y=AB‾Y = \overline{AB} Y=AB

最后一个例子图©是一个组合逻辑,可以表示为:

Y‾=A+BC\overline{Y} = A + BC Y=A+BC

或者等效于:

Y=A+BC‾Y = \overline{A + BC} Y=A+BC

接下来我们考虑一些PUN的一些例子,如图:

PUN
图(a)当 A=0A = 0A=0 或是 B=0B = 0B=0 的时候输出 Y=1Y = 1Y=1 表示为:

Y=A‾+B‾Y = \overline{A} + \overline{B} Y=A+B

图(b)当 A=0A=0A=0 并且 B=0B= 0B=0 的时候导通,表示为:

Y=A‾B‾Y = \overline{A} \ \overline{B} Y=A B

而图©表示为:

Y=A‾+B‾C‾Y = \overline{A} + \overline{B} \ \overline{C} Y=A+B C

在学习完PDN和PUN理论之后,我们就可以准备搭建我们的门电路了。首先,为了方便,我们不再使用模拟电路中的MOS符号,而是使用一种更加方便的数字电路MOS表示符号,如图:

数字MOS
上图中左边的符号是模拟MOS表示,而右边是数字MOS表示,对于PMOS我们发现在栅极的地方有一个小圈,这表示当输入是低电压的时候才导通。除此之外,数字MOS忽略了漏极栅极之分。

或非门NOR电路

首先我们考虑一个CMOS的或非门电路:

Y=A+B‾=A‾B‾Y = \overline{A + B} = \overline{A} \ \overline{B} Y=A+B=A B

等式中间给出了PDN实现,等式右边给出了PUN实现,将两个实现组合在一起,我们得到:

或非门电路

与非门NAND电路

与非门电路可以表示为:

Y=AB‾=A‾+B‾Y = \overline{AB} = \overline{A} + \overline{B} Y=AB=A+B

等式中间给出了PDN实现,等式右边给出了PUN实现,将两个实现组合在一起,我们得到:

与非门电路

一个更复杂的门电路

考虑下面的组合布尔表达式:

Y=A(B+CD)‾Y = \overline{A(B+CD)} Y=A(B+CD)

因为PDN是整体反相,因此可以直接给出PDN实现,对于PUN则是变量反相,可以通过德·摩根定律展开表达式:

Y=A‾+B‾(C‾+D‾)Y = \overline{A} + \overline{B}(\overline{C} + \overline{D}) Y=A+B(C+D)

给出实现:

复杂的逻辑组合
需要注意的是,有时候并不总是可以通过对偶律来获得两个网络的实现。对于以上情况,需要更加复杂的布尔逻辑推导。

异或门XOR电路

另一个重要的逻辑电路是异或门电路,表示为:

Y=AB‾+A‾BY = A \overline{B} + \overline{A}B Y=AB+AB

我们观察到给出 YYY 我们可以先考虑PUN,但不幸的是,表达式不是由每个变量的反相值构成,因此我们需要额外的反相器,如图的PUN:

PUN
如上图,左边的 A‾\overline{A}A 和右边的 B‾\overline{B}B 都需要先反相才能输入到PUN中,因此需要额外的两个反相器,对于PDN,通过对偶变换可以得到:

Y‾=AB+A‾B‾\overline{Y} = AB + \overline{A} \ \overline{B} Y=AB+A B

对应的PDN实现为:

PDN
同样需要两个额外的反相器。则此异或门电路总共需要12个晶体管。

有趣的是,上图中两个PDN和PUN网络不是对偶网络,实际上,PDN和PUN网络对偶并不是必要条件。

总结

  1. PDN网络可以通过关于非互补变量的 Y‾\overline{Y}Y 的表达式得到,若表达式中存在互补变量,需要额外的输入反相器。
  2. PUN网络可以通过关于互补变量的 YYY 的表达式得到,若表达式中存在非互补变量,需要额外的输入反相器。
  3. PDN网络可以将PUD网络进行对偶得到,反之亦然。

相关文章:

电子技术——CMOS 逻辑门电路

电子技术——CMOS 逻辑门电路 在本节我们介绍如何使用CMOS电路实现组合逻辑函数。在组合电路中,电路是瞬时发生的,也就是电路的输出之和当前的输入有关,并且电路是无记忆的也没有反馈。组合电路被大量的使用在当今的数字逻辑系统中。 晶体管…...

【C++】C++11 新特性

目录 1.列表初始化 1.1. C98中使用{}初始化的问题 1.2. 内置类型的列表初始化 1.3. 自定义类型的列表初始化 2. 变量类型推导 2.1. 为什么需要类型推导 2.2. decltype类型推导 2.2.1 为什么需要decltype 2.2.2. decltype 3. 对默认成员的控制(default、delete) 3.1. …...

JPA 相关注解说明

jpa相关注解 JPA(Java Persistence API)是一种Java规范,定义了一套标准的对象关系映射(ORM)API,用于将Java对象映射到关系型数据库中。JPA旨在统一各种ORM框架之间的差异,提供一种标准化的ORM解…...

SAP 生产订单/流程订单中日期的解释

SAP 生产订单/流程订单中日期的解释 基本开始日期:表示订单的开始日期 基本完成日期:表示订单的完成日期 我们在输入基本开始日期和基本完成日期时需要关注 调度 下面的“类型”,其中有向前、向后、当天日期等: 调度类型 为向前…...

Java设计模式笔记——七大设计原则

系列文章目录 第一章 Java 设计模式之七大设计原则 文章目录系列文章目录前言一、单一职责原则1.案例分析2.改进二、开闭原则1.案例分析2.改进三、里氏替换原则1.案例分析2.改进四、依赖倒转原则五、接口隔离原则1.案例分析2.改进六、合成复用原则1.案例分析2.改进七、迪米特原…...

记录第一次接口上线过程

新入职一家公司后,前三天一直在学习公司内部各种制度文化以及考试。 一直到第三天组长突然叫我过去,给了一个需求的思维导图,按照这个需求写这样一个接口, 其实还不错,不用自己去分析需求,按照这上面直接开…...

时序预测 | MATLAB实现Rmsprop算法优化LSTM长短期记忆神经网络时间序列多步预测(滚动预测未来,多指标,含验证Loss曲线)

时序预测 | MATLAB实现Rmsprop算法优化LSTM长短期记忆神经网络时间序列多步预测(滚动预测未来,多指标,含训练和验证Loss曲线) 目录 时序预测 | MATLAB实现Rmsprop算法优化LSTM长短期记忆神经网络时间序列多步预测(滚动预测未来,多指标,含训练和验证Loss曲线)效果一览基本描…...

如何利用Level2行情数据接口追板和交易股票?

十档行情看得更深的A股行情软件,我们在盘口数据中可以看到,买一到买五以及卖一到卖五,共10个价位的挂单情况,但基于上证所的level-2行情软件,视野则扩展到了买一到买十以及卖一到卖十数据,无疑比所有免费软…...

MySQL常用的聚合函数

聚合函数聚合函数对一组值进行运算,并返回单个值。也叫组合函数函数作用COUNT(*|列名) 统计查询结果的⾏数AVG(数值类型列名)求平均值,返回指定列数据的平均值SUM (数值类型列名)求和,返回指定列的总和MAX(列名)查询指定列的最⼤值MIN(列名)查…...

如何评估模糊测试工具-unibench的使用

unibench是一个用来评估模糊测试工具的benchmark。这个benchmark集成了20多个常用的测试程序,以及许多模糊测试工具。 这篇文章(https://zhuanlan.zhihu.com/p/421124258)对unibench进行了简单的介绍,本文就不再赘诉,…...

2023初级会计详细学习计划打卡表!自律逆袭,一次上岸!

2023年初级会计职称考试报名时间:2月7日-28日考试时间:5月13日—17日给大家整理了《经济法基础》和《初级会计实务》两科超实用的学习打卡表重要程度、难易度、易错点、要求掌握内容、章节估分等都全部总结在一起,一目了然!为什么…...

【Python】Python项目打包发布(四)(基于Nuitka打包PySide6项目)

Python项目打包发布汇总 【Python】Python项目打包发布(一)(基于Pyinstaller打包多目录项目) 【Python】Python项目打包发布(二)(基于Pyinstaller打包PyWebIO项目) 【Python】Pytho…...

一起Talk Android吧(第五百一十三回:Java中的byte数组与int变量相互转换)

文章目录整体思路示例代码各位看官们大家好,上一回中咱们说的例子是"自定义Dialog",这一回中咱们说的例子是" Java中的byte数组与int变量相互转换"。闲话休提,言归正转, 让我们一起Talk Android吧!在实际项目…...

22《Protein Actions Principles and Modeling》-《蛋白质作用原理和建模》中文分享

​《Protein Actions Principles and Modeling》-《蛋白质作用原理和建模》 本人能力有限,如果错误欢迎批评指正。 第五章:Folding and Aggregation Are Cooperative Transitions (折叠和聚合是同时进行的) -蛋白质折叠的协同作…...

vue2 @hook 的解析与妙用

目录前言几种用法用法一 将放在多个生命周期的逻辑,统一到一个生命周期中用法二 监听子组件生命周期运行的情况运用场景场景一 许多时候,我们不得不在不同的生命周期中执行某些逻辑,并且这些逻辑会用到一些通用的变量,这些通用变量…...

网络技术|网络地址转换与IPv6|路由设计基础|4

对应讲义——p6 p7NAT例题例1解1例2解2例3解3例4解4一、IPv6地址用二进制格式表示128位的一个IPv6地址,按每16位为一个位段,划分为8个位段。若某个IPv6地址中出现多个连续的二进制0,可以通过压缩某个位段中的前导0来简化IPv6地址的表示。例如…...

MySQL运维知识

1 日志1.1 错误日志1.2 二进制日志查看二进制日志:mysqlbinlog ./binlog.000007purge master logs to binlog.000006reset mastershow variables like %binlog_expire_logs_seconds%默认二进制文件只存放30天,30天后会自动删除。1.3 查询日志1.4 慢查询日…...

易基因-MeRIP-seq揭示衰老和神经变性过程中m6A RNA甲基化修饰的保守下调机制

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。2023年02月22日,《美国国家科学院院刊》(Proc Natl Acad Sci USA)期刊发表了题为“Conserved reduction of m6A RNA modifications during aging and neurodegeneration is lin…...

暑期实习准备——Verilog手撕代码(持续更新中。。。

暑期实习准备——手撕代码牛客刷题笔记Verilog快速入门VL4 移位运算与乘法VL5 位拆分与运算VL6 多功能数据处理器VL8 使用generate…for语句简化代码VL9 使用子模块实现三输入数的大小比较VL11 4位数值比较器电路VL12 4bit超前进位加法器电路VL13 优先编码器电路①VL14 用优先编…...

Qt音视频开发19-vlc内核各种事件通知

一、前言 对于使用第三方的sdk库做开发,除了基本的操作函数接口外,还希望通过事件机制拿到消息通知,比如当前播放进度、音量值变化、静音变化、文件长度、播放结束等,有了这些才是完整的播放功能,在vlc中要拿到各种事…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...