代码随想录27期|Python|Day16|二叉树|104.二叉树的最大深度|111.二叉树的最小深度|222.完全二叉树的节点个数
二叉树专题,重点掌握后续的递归和中间节点的处理。
104. 二叉树的最大深度 - 力扣(LeetCode)
本题在前一章已经解决了层序遍历的解法,现在来聊一下递归法。
首先需要明确两个概念:深度和高度。(注意,起始位置的值都是1)
深度:从root开始,到当前位置所在节点的层数;
高度:从底层叶子节点开始,到当前所在节点的层数。

再来说一下选择什么顺序来遍历。
前序:从root出发,直接找的是深度;
后序:从叶子节点出发,返回给root节点高度。
也就是说,不管选择哪一种,中间节点都是单独处理的。
后序遍历
按照递归的书写三部曲,可以写出后序遍历的方法。
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):def maxDepth(self, root):""":type root: TreeNode:rtype: int"""# 后序遍历(Version 1)# step1 确定返回值类型:TreeNode# step2 确定终止条件:当前节点是空if not root:return 0else:# step3 单层处理:按照“左右中”的顺序,先遍历左节点高度,再遍历右节点高度,汇总到中间节点取较大值,再加1(因为当前中间节点也算作一层)left_height = self.maxDepth(root.left)right_height = self.maxDepth(root.right)return max(left_height, right_height) + 1# 精简递归(Version 2)return 0 if not root else max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1
前序遍历
要麻烦很多,还涉及到回溯算法,十分甚至九分的不推荐。
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):def maxDepth(self, root):""":type root: TreeNode:rtype: int"""# 递归(前序遍历)res = 0if not root:return 0self.getdepth(root, 1)return resdef getdepth(self, node, depth):res = max(depth, res)if node.left == None and node.right == None:returnif node.left:depth += 1self.getdepth(node.left, depth)depth -= 1 # 回溯算法if node.right:depth += 1self.getdepth(node.right, depth)depth -= 1return
559. N 叉树的最大深度 - 力扣(LeetCode)
和上面相似的一道题,只用了递归+左右中的后序遍历。
只需要用for遍历所有孩子节点(其实就是上面分别判断左节点和右节点的推广)。
"""
# Definition for a Node.
class Node(object):def __init__(self, val=None, children=None):self.val = valself.children = children
"""class Solution(object):def maxDepth(self, root):""":type root: Node:rtype: int"""if not root:return 0max_depth = 1 # 在排除顶部节点是空的时候初始化最大值是1# 遍历所有的孩子节点for child in root.children:# 注意在每次比较的时候+ 1,表示计算上了中间节点max_depth = max(self.maxDepth(child) + 1, max_depth)return max_depth
111. 二叉树的最小深度 - 力扣(LeetCode)
本题需要注意的是和上面求解最大值需要遍历到底不一样,本题需要遍历到第一个叶子节点,也就是左右子树都没有的第一个节点。
依然使用后序遍历。
递归法
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):def minDepth(self, root):""":type root: TreeNode:rtype: int"""# 递归法if not root:return 0else:# 左left_height = self.minDepth(root.left)# 右right_height = self.minDepth(root.right)# 中if root.left and root.right == None: # 左子树存在,右子树不存在return left_height + 1if root.right and root.left == None: # 右子树存在左子树不存在return right_height + 1# 遇到叶子节点返回到中间节点的最小值return min(left_height, right_height) + 1
精简递归
把求解左右高度的简化到中间处理的返回值处。
# 左left_height = self.minDepth(root.left)# 右right_height = self.minDepth(root.right)
222. 完全二叉树的节点个数 - 力扣(LeetCode)
递归(后序遍历)
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):def countNodes(self, root):""":type root: TreeNode:rtype: int"""# 当作普通二叉树if not root:return 0# 左left_num = self.countNodes(root.left)# 右right_num = self.countNodes(root.right)# 中return left_num + right_num + 1# 精简版if not root:return 0return self.countNodes(root.left) + self.countNodes(root.right) + 1
利用完全二叉树递归
题干当中还特别说明了是完全二叉树,所以我们可以使用完全二叉树在左右外侧深度相等的时候是满二叉树的性质来统计。
简单概括就是:如果这一层的左子树的左深度和右子树的右深度相等,那么就可以判断现在这是满二叉树。
利用这个性质,我们就很容易可以判断满足满二叉树的条件。
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):def countNodes(self, root):""":type root: TreeNode:rtype: int"""# 利用完全二叉树if not root:return 0# 判断是满二叉树直接输出leftnode = root.leftrightnode = root.rightleft_depth, right_depth = 0, 0while leftnode:leftnode = leftnode.leftleft_depth += 1while rightnode:rightnode = rightnode.rightright_depth += 1if left_depth == right_depth:return (2 << left_depth) - 1 # 2 << 1 = 2 ^ 2# 普通二叉树正常递归输出return self.countNodes(root.left) + self.countNodes(root.right) + 1
第16天完结🎉
相关文章:
代码随想录27期|Python|Day16|二叉树|104.二叉树的最大深度|111.二叉树的最小深度|222.完全二叉树的节点个数
二叉树专题,重点掌握后续的递归和中间节点的处理。 104. 二叉树的最大深度 - 力扣(LeetCode) 本题在前一章已经解决了层序遍历的解法,现在来聊一下递归法。 首先需要明确两个概念:深度和高度。(注意&…...
༺༽༾ཊ—设计-简介-模式—ཏ༿༼༻
我对设计模式的理解就是一种可复用的且面向对象的设计工具,它与代码无关,我们可以利用设计模式设计出高内聚、低耦合的应用程序,并且最大程度实现程序的复用,以应对复杂的需求变化。 程序的可复用性就是用已存在的程序模块进行更新…...
Matplotlib快速入门,Python通用的绘图工具库上手
Matplotlib是一个用于Python编程语言的综合性绘图库。 它可以生成各种类型的图表,包括折线图、条形图、散点图、直方图、饼图等。Matplotlib支持多种数据格式,包括NumPy数组、Pandas DataFrame和CSV文件。它还可以从URL读取数据。 Matplotlib可以在交互…...
Linux 基本语句_16_Udp网络聊天室
代码: 服务端代码: #include <stdio.h> #include <arpa/inet.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <stdlib.h> #include <unistd.h> #include <string…...
使用ffmpeg命令进行视频格式转换
1 ffmpeg介绍 FFmpeg 是一个非常强大和灵活的开源工具集,用于处理音频和视频文件。它提供了一系列的工具和库,可以用于录制、转换、流式传输和播放音频和视频。 FFmpeg 主要特点如下: 格式支持广泛:FFmpeg 支持几乎所有的音频和视…...
Mac安装Adobe AE/pr/LR/ai/ps/au/dw/id 2024/2023报错问题解决(常见错误:已损坏/2700/146/130/127)
1.打开允许“允许任何来源” 如何打开允许任何来源?在 Finder 菜单栏选择 【前往】 – 【实用工具 】,找到【终端】程序,双击打开,在终端窗口中输入:sudo spctl --master-disable 输入代码后,按【return …...
Python三级 每周练习题31
如果你感觉有收获,欢迎给我微信扫打赏码 ———— 以激励我输出更多优质内容 练习一: 作业1:编写程序,在下面的字典中找出身高137的同学并输出姓名,如果没找到, 输出没有 a{‘小赵’:136,‘小钱’:141,‘小孙’:146,‘小李’:13…...
【DataSophon】大数据服务组件之Flink升级
🦄 个人主页——🎐开着拖拉机回家_Linux,大数据运维-CSDN博客 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁&am…...
Android笔记(十八):面向Compose组件结合Retrofit2和Rxjava3实现网络访问
一、Retrofit2 Square公司推出的Retrofit2库(https://square.github.io/retrofit/),改变了网络访问的方式。它实现了网络请求的封装。Retrofit库采用回调处理方式,使得通过接口提交请求和相应的参数的配置,就可以获得…...
mybatis中oracle的sql没走索引导致特别慢(未加jdbcType的)
如果直接跑sql是能走索引很快,在mybatis中不能,可能就是jdbcType的原因。 比如,我有一个属性A,在表里面是VARCHAR2类型,但是在mybatis中的sql是#{a},缺少jdbcTypeJdbcType.VARCHAR,就会导致myba…...
QT自带打包问题:无法定位程序输入点?metaobject@qsound
文章目录 无法定位程序输入点?metaobjectqsound……检查系统环境变量的配置:打包无须安装qt的文件 无法定位程序输入点?metaobjectqsound…… 在执行release打包程序后,相应的release文件夹下的exe文件,无法打开 如有错误欢迎指出 检查系…...
7.3 lambda函数
一、语法 1.基础语法 [capture](paramLists) mutable ->retunType{statement} capture。捕获列表,用于捕获前文的变量供lambda函数中使用,可省略。(paramLists)。参数列表,可省略。mutable。lambda表达式默认具有常量性,可以…...
dcoker-compose一键部署EFAK —— 筑梦之路
简介 EFAK(Eagle For Apache Kafka,以前称为 Kafka Eagle)是一款由国内公司开源的Kafka集群监控系统,可以用来监视kafka集群的broker状态、Topic信息、IO、内存、consumer线程、偏移量等信息,并进行可视化图表展示。独…...
音视频:Ubuntu下安装 FFmpeg 5.0.X
1.安装相关依赖 首可选一: sudo apt-get update sudo apt-get install build-essential autoconf automake libtool pkg-config \libavcodec-dev libavformat-dev libavutil-dev \libswscale-dev libresample-dev libavdevice-dev \libopus-dev libvpx-dev libx2…...
【LSM tree 】Log-structured merge-tree 一种分层、有序、面向磁盘的数据结构
文章目录 前言基本原理读写流程写流程读流程 写放大、读放大和空间放大优化 前言 LSM Tree 全称是Log-structured merge-tree, 是一种分层,有序,面向磁盘的数据结构。其核心原理是磁盘批量顺序写比随机写性能高很多,可以通过围绕这一原理进行…...
配置OSPF与BFD联动示例
定义 双向转发检测BFD(Bidirectional Forwarding Detection)是一种用于检测转发引擎之间通信故障的检测机制。 BFD对两个系统间的、同一路径上的同一种数据协议的连通性进行检测,这条路径可以是物理链路或逻辑链路,包括隧道。 …...
01到底应该怎么理解“平均负载”
1、如何了解系统的负载情况? 每次发现系统变慢时, 我们通常做的第⼀件事, 就是执⾏top或者uptime命令, 来了解系统的负载情况。 ⽐如像下⾯这样, 我在命令⾏⾥输⼊了uptime命令, 系统也随即给出了结果。 …...
jmeter,动态参数之随机数、随机日期
通过函数助手,执行以下配置: 执行后的结果树: 数据库中也成功添加了数据,对应字段是随机值:...
uniApp常见知识点-问题答案
1、uniApp中如何进行页面跳转? 答案:可以使用 uni.navigateTo、uni.redirectTo 和 uni.reLaunch 等方法进行页面跳转。其中,uni.navigateTo可以实现页面的普通跳转, uni.redirectTo可以实现页面的重定向跳转, uni.reL…...
云原生基础入门概念
文章目录 发现宝藏云原生的概念云原生的关键技术为何选择云原生?云原生的实际应用好书推荐 发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。 云原生的概念 当谈及现…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...
