动手学深度学习-自然语言处理-预训练
词嵌入模型
- 将单词映射到实向量的技术称为词嵌入。
为什么独热向量不能表达词之间的相似性?

自监督的word2vec。
word2vec将每个词映射到一个固定长度的向量,这些向量能更好的表达不同词之间的相似性和类比关系。
word2vec分为两类,两类模型都是自监督模型。
- 跳元模型(SKip-Gram)。
- 连续词袋(CBOW)模型。
小结
- 词向量是用于表示单词意义的向量,也可以看作词的特征向量。将词映射到实向量的技术称为词嵌入。
- word2vec工具包含跳元模型和连续词袋模型。
- 跳元模型假设一个单词可用于在文本序列中,生成其周围的单词;而连续词袋模型假设基于上下文词来生成中心单词。

跳元模型和连续词袋模型的损失函数?


近似训练
使用负采样和分层Softmax来优化损失函数的计算:
- 负采样通过考虑相互独立的事件来构造损失函数,这些事件同时涉及正例和负例。训练的计算量与每一步的噪声词数成线性关系。
- 分层softmax使用二叉树中从根节点到叶节点的路径构造损失函数。训练的计算成本取决于词表大小的对数。


用于预训练词嵌入的数据集
- 高频词在训练中可能不是那么有用。我们可以对他们进行下采样,以便在训练中加快速度。
- 为了提高计算效率,我们以小批量方式加载样本。我们可以定义其他变量来区分填充标记和非填充标记,以及正例和负例。
预训练word2vec
-
我们可以使用嵌入层和二元交叉熵损失来训练带负采样的跳元模型。




-
词嵌入的应用包括基于词向量的余弦相似度为给定词找到语义相似的词。
全局向量的词嵌入
- 诸如词-词共现计数的全局语料库统计可以来解释跳元模型。
- 交叉熵损失可能不是衡量两种概率分布差异的好选择,特别是对于大型语料库。GloVe使用平方损失来拟合预先计算的全局语料库统计数据。
- 对于GloVe中的任意词,中心词向量和上下文词向量在数学上是等价的。
- GloVe可以从词-词共现概率的比率来解释。
子词嵌入
- fastText模型提出了一种子词嵌入方法:基于word2vec中的跳元模型,它将中心词表示为其子词向量之和。
- 字节对编码执行训练数据集的统计分析,以发现词内的公共符号。作为一种贪心方法,字节对编码迭代地合并最频繁的连续符号对。
- 子词嵌入可以提高稀有词和词典外词的表示质量。
FastText模型的主要结构组件:



FastText模型的主要特点是什么?



词的相似性和类比任务
- 在实践中,在大型语料库上预先练的词向量可以应用于下游的自然语言处理任务。
- 预训练的词向量可以应用于词的相似性和类比任务。
自然语言处理中的预训练是在训练什么?



来自Transformer的双向编码器表示
由于语言模型的自回归特性,GPT只能向前看(从左到右)。在“i went to the bank to deposit cash”(我去银行存现金)和“i went to the bank to sit down”(我去河岸边坐下)的上下文中,由于“bank”对其左边的上下文敏感,GPT将返回“bank”的相同表示,尽管它有不同的含义。
小结
- word2vec和GloVe等词嵌入模型与上下文无关。它们将相同的预训练向量赋给同一个词,而不考虑词的上下文(如果有的话)。它们很难处理好自然语言中的一词多义或复杂语义。
- 对于上下文敏感的词表示,如ELMo和GPT,词的表示依赖于它们的上下文。
- ELMo对上下文进行双向编码,但使用特定于任务的架构(然而,为每个自然语言处理任务设计一个特定的体系架构实际上并不容易);而GPT是任务无关的,但是从左到右编码上下文。
- BERT结合了这两个方面的优点:它对上下文进行双向编码,并且需要对大量自然语言处理任务进行最小的架构更改。
- BERT输入序列的嵌入是词元嵌入、片段嵌入和位置嵌入的和。
- 预训练包括两个任务:掩蔽语言模型和下一句预测。前者能够编码双向上下文来表示单词,而后者则显式地建模文本对之间的逻辑关系。
word2vec,Glove,EIMo,GPT,BERT等模型的特点,优点和缺点:



总结:
每种模型都有其独特的优势和局限性。Word2Vec和GloVe在词嵌入方面表现出色,但不涉及上下文信息;ELMo、GPT和BERT则在捕捉复杂的上下文关系方面更为先进,但也伴随着更高的资源需求。选择哪种模型通常取决于特定任务的需求、可用资源和性能目标。
用于预训练BERT的数据集
- 与PTB数据集相比,WikiText-2数据集保留了原来的标点符号、大小写和数字,并且比PTB数据集大了两倍多。
- 我们可以任意访问从WikiText-2语料库中的一对句子生成的预训练(遮蔽语言模型和下一句预测)样本。
预训练BERT
BERT的预训练机制:


小结
- 原始的BERT有两个版本,其中基本模型有1.1亿个参数,大模型有3.4亿个参数。
- 在预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。
- 在实验中,同一个词元在不同的上下文中具有不同的BERT表示。这支持BERT表示是上下文敏感的。
遮蔽语言模型损失和下一句预测损失分别表示什么?


MLM损失和NSP损失共同构成了BERT模型的预训练损失,它们分别针对模型的两个核心任务:理解词的上下文相关含义和理解句子间的关系。通过最小化这两个损失,BERT能够学习到丰富且有效的语言表示,为各种下游NLP任务奠定基础。
相关文章:
动手学深度学习-自然语言处理-预训练
词嵌入模型 将单词映射到实向量的技术称为词嵌入。 为什么独热向量不能表达词之间的相似性? 自监督的word2vec。 word2vec将每个词映射到一个固定长度的向量,这些向量能更好的表达不同词之间的相似性和类比关系。 word2vec分为两类,两类…...
力扣200. 岛屿数量(java DFS解法)
Problem: 200. 岛屿数量 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 该问题可以归纳为一类遍历二维矩阵的题目,此类中的一部分题目可以利用DFS来解决,具体到本题目: 1.我们首先要针对于二维数组上的每一个点,尝试展…...
解决el-table组件中,分页后数据的勾选、回显问题?
问题描述: 1、记录一个弹窗点击确定按钮后,table列表所有勾选的数据信息2、再次打开弹窗,回显勾选所有保存的数据信息3、遇到的bug:切换分页,其他页面勾选的数据丢失;点击确认只保存当前页的数据࿱…...
web网络安全
web安全 一,xss 跨站脚本攻击(全称Cross Site Scripting,为和CSS(层叠样式表)区分,简称为XSS)是指恶意攻击者在Web页面中插入恶意javascript代码(也可能包含html代码),当用户浏览网页之时&…...
若依 ruoyi-vue3 集成aj-captcha实现滑块、文字点选验证码
目录 0. 前言0.1 说明 1. 后端部分1.1 添加依赖1.2. 修改 application.yml1.3. 新增 CaptchaRedisService 类1.4. 添加必须文件1.5. 移除不需要的类1.6. 修改登录方法1.7. 新增验证码开关获取接口1.8. 允许匿名访问 2. 前端部分(Vue3)2.1. 新增依赖 cryp…...
安卓10 flutter webview 回退会闪退
现象 在安卓10设备上,访问了webview页面后,回退到其他页面后,大概率会闪退,请查看issuses https://github.com/flutter/flutter/issues/78405 解决思路:在回退前,先把webview销毁掉,重新生成一个…...
【Unity入门】物体5种移动方法
目录 一、通过修改位置来实现移动二、通过物理系统实现位移三、通过CharacterController组件四、通过输入控制物体移动 一、通过修改位置来实现移动 利用修改Transform组件的position的两种常用方法。 使用Translate()函数 /*物体将向x方向移动1.5单位…...
Elasticsearch的 8.x常用api汇总
ES的查询语法比较复杂,对于初学者需要在不断练习中才会逐渐掌握,本文汇总了ES各种查询语法以及常用api,可以作为新手的实用笔记 首先,安装 Kibana! 下载Elasticsearch,官方下载页面;Elasticsearch 参考,官方文档;<...
k8syaml提供的几个有意思的功能,Kubernetes在线工具网站
k8syaml.cn 提供的几个有意思的功能。 一、yaml资源快速生成 之前编写operator的helm的时候就需要自己写deployment、service、configmap这些资源,那么多字段也记不清,都是先找个模版,然后copy改改,再看官方文档,添加…...
【图像分类】【深度学习】【Pytorch版本】 ResNeXt模型算法详解
【图像分类】【深度学习】【Pytorch版本】 ResNeXt模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】 ResNeXt模型算法详解前言ResNeXt讲解分组卷积(Group Converlution)分割-变换-合并策略(split-transform-merge)ResNeXt模型结构 ResNeXt Pytorch代码完整代码总…...
Android 14 应用适配指南
Android 14 应用适配指南:https://dev.mi.com/distribute/doc/details?pId1718 Android 14 功能和变更列表 | Android 开发者 | Android Developers 1.获取Android 14 1.1 谷歌发布时间表 https://developer.android.com/about/versions/14/overview#timeli…...
【AI美图提示词】第07期效果图,AI人工智能自动绘画,精选绝美版美图欣赏
AI诗配画 山水画中景如画,云雾缭绕峰峦间。桥畔流水潺潺响,诗意盎然山水间。上面的诗句和图片全部来自AI自动化完成,这就是技术的力量,接下来我们进行模型生成学习: 先上原始底图: 下面是模型生成效果图&a…...
前端知识(十三)——JavaScript监听按键,禁止F12,禁止右键,禁止保存网页【Ctrl+s】等操作
禁止右键 document.oncontextmenu new Function("event.returnValuefalse;") //禁用右键禁止按键 // 监听按键 document.onkeydown function () {// f12if (window.event && window.event.keyCode 123) {alert("F12被禁用");event.keyCode 0…...
面向对象设计与分析(28)单例模式的奇异递归模板CRTP实现
前面我们介绍了单例模式的两种实现:懒汉模式和饿汉模式,今天我们以新的方式来实现可复用的单例模式。 奇异递归模板是指父类是个模板类,模板类型是子类类型,即父类通过模板参数可以知道子类的类型。 // brief: a singleton base…...
微信小程序 - 龙骨图集拆分
微信小程序 - 龙骨图集拆分 注意目录结构演示动画废话一下业务逻辑注意点龙骨JSON图集结构 源码分享dragonbones-split.jsdragonbones-split.jsondragonbones-split.wxmldragonbones-split.wxssimgUtil.js 参考资料 注意 只支持了JSON版本 目录结构 演示动画 Spine播放器1.5.…...
使用React 18和WebSocket构建实时通信功能
1. 引言 WebSocket是一种在Web应用中实现双向通信的协议。它允许服务器主动向客户端推送数据,而不需要客户端发起请求。在现代的实时应用中,WebSocket经常用于实时数据传输、聊天功能、实时通知和多人协作等场景。在本篇博客中,我们将探索如…...
vue3使用vue-router嵌套路由(多级路由)
文章目录 1、Vue3 嵌套路由2、项目结构3、编写相关页面代码3.1、编写route文件下 index.ts文件3.2、main.ts文件代码:3.3、App.vue文件代码:3.4、views文件夹下的Home文件夹下的index.vue文件代码:3.5、views文件夹下的Home文件夹下的Tigerhh…...
openGauss学习笔记-164 openGauss 数据库运维-备份与恢复-导入数据-使用COPY FROM STDIN导入数据-处理错误表
文章目录 openGauss学习笔记-164 openGauss 数据库运维-备份与恢复-导入数据-使用COPY FROM STDIN导入数据-处理错误表164.1 操作场景164.2 查询错误信息164.3 处理数据导入错误 openGauss学习笔记-164 openGauss 数据库运维-备份与恢复-导入数据-使用COPY FROM STDIN导入数据-…...
QT Widget - 随便画个圆
简介 实现在界面中画一个圆, 其实目的是想画一个LED效果的圆。代码 #include <QApplication> #include <QWidget> #include <QPainter> #include <QColor> #include <QPen>class LEDWidget : public QWidget { public:LEDWidget(QWidget *pare…...
js输入框部分内容不可编辑,其余正常输入,el-input和el-select输入框和多个下拉框联动后的内容不可修改
<tr>//格式// required自定义指令<e-td :required"!read" label><span>地区:</span></e-td><td>//v-if"!read && this.data.nationCode 148"显示逻辑<divclass"table-cell-flex"sty…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
