【深度学习目标检测】五、基于深度学习的安全帽识别(python,目标检测)
深度学习目标检测方法则是利用深度神经网络模型进行目标检测,主要有以下几种:
R-CNN系列:包括R-CNN、Fast R-CNN、Faster R-CNN等,通过候选区域法生成候选目标区域,然后使用卷积神经网络提取特征,并通过分类器对每个候选区域进行分类。
SSD:Single Shot MultiBox Detector,通过在特征图上利用不同大小和形状的卷积核进行目标检测,同时预测目标的类别和位置。
YOLO:You Only Look Once,将目标检测问题转化为回归问题,通过将图像分割成网格单元,并预测每个单元中是否存在目标以及目标的位置和类别。
RetinaNet:通过引入Focal Loss解决目标检测中类别不平衡问题,提高了小目标的检测效果。
YOLOv8是一种用于对象检测的深度学习模型,它是YOLO系列模型的最新版本。本文介绍了基于Yolov8的任务的安全帽检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。
效果如下图(带了安全帽的类别是helmet,没带安全帽的head):
示例2:
一、yolov8安装
yolov8官方文档:主页 - Ultralytics YOLOv8 文档
安装部分参考:官方安装教程
二、数据集准备
本次使用的数据集是安全帽检测数据集,其包含的示例图片如下:
原数据集的格式为voc格式,来自aistudio平台,使用yolov8训练需要将voc格式转换为yolov8训练的格式,本文提供转换好的数据集连接:训练和验证图片、数据标签。
其中训练数据4000条,验证数据1000条,请将所有数据按照以下目录放置:
|-images|--|-train|--|-val|-labels|--|-train|--|-val
三、模型训练
1、数据集配置文件
在ultralytics/ultralytics/cfg/datasets目录下添加anquanmao.yaml,添加以下内容(path修改为自己的路径):
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/helmet/HelmetDetection-yolov8 #改成你的数据集路径,建议使用绝对路径
train: images/train
val: images/val
test: images/val # Classes
names:# 0: normal0: helmet1: head2: person
2、修改模型配置文件
在ultralytics/ultralytics/cfg/models/v8目录下添加yolov8n_helmet.yaml,添加以下内容:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 3 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
3、训练模型
使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:
yolo detect train project=deploy name=yolov8_helmet exist_ok=False optimizer=auto val=True amp=True epochs=100 imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_helmet.yaml data=ultralytics/ultralytics/cfg/datasets/anquanmao.yaml
4、验证模型
使用如下命令验证模型,相关路径根据需要修改:
yolo detect val imgsz=640 model=deploy/yolov8_helmet/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/anquanmao.yaml
精度如下:
四、推理
训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:
from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'hard_hat_workers1.png'
results = model(image_path) # 结果列表# 展示结果
for r in results:im_array = r.plot() # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像im.show() # 显示图像im.save('results.jpg') # 保存图像
五、相关资料下载
您可以在推理代码下载本文训练好的权重和推理代码。
相关文章:

【深度学习目标检测】五、基于深度学习的安全帽识别(python,目标检测)
深度学习目标检测方法则是利用深度神经网络模型进行目标检测,主要有以下几种: R-CNN系列:包括R-CNN、Fast R-CNN、Faster R-CNN等,通过候选区域法生成候选目标区域,然后使用卷积神经网络提取特征,并通过分类…...

芒果RT-DETR改进实验:深度集成版目标检测 RT-DETR 热力图来了!支持自定义数据集训练出来的模型
💡该教程为改进RT-DETR指南,属于《芒果书》📚系列,包含大量的原创改进方式🚀 💡🚀🚀🚀内含改进源代码 按步骤操作运行改进后的代码即可💡更方便的统计更多实验数据,方便写作 芒果RT-DETR改进实验:深度集成版目标检测 RT-DETR 热力图来了!支持自定义数据集…...
c语言实验八
实验1:在主函数中输入num个字符串,写一个函数,从传入的num个字符串中找出最长的一个字符串,并通过形参指针max传回该串地址,在主函数中输出。(注意:用****作为结束输入的标志。) #i…...

ArcGIS Pro SDK文件选择对话框
文件保存对话框 // 获取默认数据库var gdbPath Project.Current.DefaultGeodatabasePath;//设置文件的保存路径SaveItemDialog saveLayerFileDialog new SaveItemDialog(){Title "Save Layer File",OverwritePrompt true,//获取或设置当同名文件已存在时是否出现…...

ACT、NAT、NATPT和EASY-IP
目录 一、ACL 1.ACL 2.ACL的两种应用匹配机制 3.ACL的基本类型 4.ACL命令操作 5.ACL实验: 4.ACL的应用原则: 5.匹配原则: 二、NAT 1.NAT的原理及作用: 2.NAT分类 3.NAT配置 三、EASY-ip实验 四、NATPT 五、通配符 …...
HTML实现每天单词积累
注册页面 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>注册</title><style>body {font-family: Arial, sans-serif;background-color: #f5f5f5;}form {max-width: 500px;margin: 50px auto;padding: 40px…...

【ECMAScript笔记二】运算符分类,流程控制(顺序结构、分支结构、循环结构)
文章目录 4 运算符4.1 算术运算符4.2 递增和递减运算符4.3 比较运算符4.4 逻辑运算符4.5 赋值运算符4.6 运算优先级 5 流程控制5.1 顺序结构5.2 分支结构5.2.1 if 语句5.2.2 switch 语句 5.3 循环结构5.3.1 for循环5.3.2 while循环5.3.3 do while循环5.3.4 continue和break 5.4…...

ShenYu网关注册中心之Zookeeper注册原理
文章目录 1、客户端注册流程1.1、读取配置1.1.1、用于注册的 ZookeeperClientRegisterRepository1.1.2、用于扫描构建 元数据 和 URI 的 SpringMvcClientEventListener 1.2、扫描注解,注册元数据和URI1.2.1、构建URI并写入Disruptor1.2.2、构建元数据并写入Disrupto…...

高级C#技术(二)
前言 本章为高级C#技术的第二节也是最后一节。前一节在下面这个链接 高级C#技术https://blog.csdn.net/qq_71897293/article/details/134930989?spm1001.2014.3001.5501 匿名类型 匿名类型如其名,匿名的没有指定变量的具体类型。 举个例子: 1 创建…...

【性能测试】基础知识篇-压力模型
常见压力模式 并发模式(即虚拟用户模式)和RPS模式(即Requests Per Second,每秒请求数,吞吐量模式)。 本文介绍这两种压力模式的区别,以便根据自身业务场景选择更合适的压力模式。 并发模式 …...
springboot-redis设置定时触发任务详解
最近研究了一下“redis定时触发”,网上查了查资料,这里记录一下。 从Redis 2.8.0开始,Redis加入了发布/订阅模式以及键空间消息提醒(keyspace notification)功能。键空间消息提醒提供了允许客户端通过订阅指定信道获取…...

Video anomaly detection with spatio-temporal dissociation 论文阅读
Video anomaly detection with spatio-temporal dissociation 摘要1.介绍2.相关工作3. Methods3.1. Overview3.2. Spatial autoencoder3.3. Motion autoencoder3.4. Variance attention module3.5. Clustering3.6. The training objective function 4. Experiments5. Conclusio…...

svn 安装
安装系统 ubuntu 22 安装命令: sudo apt-get install subversion 创建第一个工程: 创建版本库、项目 1、先创建svn根目录文件夹 sudo mkdir /home/svn 2、创建项目的目录文件夹 sudo mkdir /home/svn/demo_0 svnadmin create /home/svn/demo_0 配置&a…...

slurm 23.11.0集群 debian 11.5 安装
slurm 23.11.0集群 debian 11.5 安装 用途 Slurm(Simple Linux Utility for Resource Management, http://slurm.schedmd.com/ )是开源的、具有容错性和高度可扩展的Linux集群超级计算系统资源管理和作业调度系统。超级计算系统可利用Slurm对资源和作业进行管理&a…...

ffmpeg可以做什么
用途 FFmpeg是一个功能强大的多媒体处理工具,可以处理音频和视频文件。它是一个开源项目,可在各种操作系统上运行,包括Linux、Windows和Mac OS X等。以下是FFmpeg可以做的一些主要任务: 转换媒体格式:可将一个媒体格式…...

一种缩小数据之间差距的算法
先上代码: /** * 缩小数据之间的差距,但是大小关系不变的方法* param {Array} features */function minMaxData(data) {for (let i 0; i < data.length; i) {const f data[i];const x f[1];const yf[2];//此处5根据实际情况设置const y2 Math.pow(…...

【Axure RP9】动态面板使用------案例:包括轮播图和多方式登入及左侧菜单栏案例
目录 一 动态面板简介 1.1 动态面板是什么 二 轮播图 2.1 轮播图是什么 2.2 轮播图应用场景 2.3 制作实播图 三 多方式登入 3.1多方式登入是什么 3.3 多方式登入实现 四 左侧菜单栏 4.1左侧菜单栏是什么 4.2 左侧菜单栏实现 一 动态面板简介 1.1 动态面板是什么…...

在接口实现类中,加不加@Override的区别
最近的软件构造实验经常需要设计接口,我们知道Override注解是告诉编译器,下面的方法是重写父类的方法,那么单纯实现接口的方法需不需要加Override呢? 定义一个类实现接口,使用idea时,声明implements之后会…...

优质全套SpringMVC教程
三、SpringMVC 在SSM整合中,MyBatis担任的角色是持久层框架,它能帮我们访问数据库,操作数据库 Spring能利用它的两大核心IOC、AOP整合框架 1、SpringMVC简介 1.1、什么是MVC MVC是一种软件架构的思想(不是设计模式-思想就是我们…...

微信小程序---使用npm包安装Vant组件库
在小程序项目中,安装Vant 组件库主要分为如下3步: 注意:如果你的文件中不存在pakage.json,请初始化一下包管理器 npm init -y 1.通过 npm 安装(建议指定版本为1.3.3) 通过npm npm i vant/weapp1.3.3 -S --production 通过y…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...