风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型
目录
前言
1 风速数据EMD分解与可视化
1.1 导入数据
1.2 EMD分解
2 数据集制作与预处理
2.1 先划分数据集,按照8:2划分训练集和测试集
2.2 设置滑动窗口大小为96,制作数据集
3 基于Pytorch的EMD-CNN-GRU并行模型预测
3.1 数据加载,训练数据、测试数据分组,数据分batch
3.2 定义EMD-CNN-GRU并行预测模型
3.3 定义模型参数
3.4 模型训练
3.5 结果可视化
往期精彩内容:
风速预测(一)数据集介绍和预处理-CSDN博客
风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客
风速预测(三)EMD-LSTM-Attention模型-CSDN博客
风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客
风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客
前言
LSTF(Long Sequence Time-Series Forecasting)问题是指在时间序列预测中需要处理长序列的情况。在实际应用中,时间序列可能会包含非常大量的数据点,在这种情况下,传统的时间序列预测模型可能会遇到一些挑战,因为处理长序列时会出现一些问题,例如:
-
长期依赖性: 随着时间序列数据的增长,模型需要能够捕捉长期的依赖关系和趋势。
-
计算复杂性: 针对长序列进行训练和预测通常需要更多的计算资源和时间。
-
内存消耗: 长序列通常需要大量的内存来存储数据和模型参数,这可能会导致内存耗尽或者性能下降的问题。
在处理LSTF问题时,选择合适的窗口大小(window size)是非常关键的。选择合适的窗口大小可以帮助模型更好地捕捉时间序列中的模式和特征,为了提取序列中更长的依赖建模,本文把窗口大小提升到96,运用EMD-CNN-GRU并行模型来充分提取序列中的特征信息。
本文基于前期介绍的风速数据(文末附数据集),先经过经验模态EMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现EMD-CNN-GRU并行模型对风速数据的预测。风速数据集的详细介绍可以参考下文:
风速预测(一)数据集介绍和预处理-CSDN博客
1 风速数据EMD分解与可视化
1.1 导入数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')
# 读取已处理的 CSV 文件
df = pd.read_csv('wind_speed.csv' )
# 取风速数据
winddata = df['Wind Speed (km/h)'].tolist()
winddata = np.array(winddata) # 转换为numpy
# 可视化
plt.figure(figsize=(15,5), dpi=100)
plt.grid(True)
plt.plot(winddata, color='green')
plt.show()
1.2 EMD分解
from PyEMD import EMD
# 创建 EMD 对象
emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(winddata)
# 可视化
plt.figure(figsize=(20,15))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(winddata, 'r')
plt.title("原始信号")
for num, imf in enumerate(IMFs):plt.subplot(len(IMFs)+1, 1, num+2)plt.plot(imf)plt.title("IMF "+str(num+1), fontsize
=
10
)
# 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.8, wspace=0.2)
plt.show()
2 数据集制作与预处理
2.1 先划分数据集,按照8:2划分训练集和测试集
2.2 设置滑动窗口大小为96,制作数据集
3 基于Pytorch的EMD-CNN-GRU并行模型预测
3.1 数据加载,训练数据、测试数据分组,数据分batch
# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100) # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载数据集
def dataloader(batch_size, workers=2):# 训练集train_set = load('train_set')train_label = load('train_label')# 测试集test_set = load('test_set')test_label = load('test_label')
# 加载数据train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_set, train_label),batch_size=batch_size, num_workers=workers, drop_last=True)test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_set, test_label),batch_size=batch_size, num_workers=workers, drop_last=True)return train_loader, test_loader
batch_size = 64
# 加载数据
train_loader, test_loader = dataloader(batch_size)
3.2 定义EMD-CNN-GRU并行预测模型
注意:输入风速数据形状为 [64, 10, 96], batch_size=64, 维度10维代表10个分量,96代表序列长度(滑动窗口取值)。
3.3 定义模型参数
# 定义模型参数
batch_size = 64
input_len = 96 # 输入序列长度为96 (窗口值)
input_dim = 10 # 输入维度为10个分量
conv_archs = ((1, 32), (1, 64)) # CNN 层卷积池化结构 类似VGG
hidden_layer_sizes = [64, 128] # GRU 层 结构
output_size = 1 # 单步输出
model = EMDCNNGRUModel(batch_size, input_len, input_dim, conv_archs, hidden_layer_sizes, output_size=1)
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.MSELoss() # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate) # 优化器
3.4 模型训练
训练结果
采用两个评价指标:MSE 与 MAE 对模型训练进行评价,100个epoch,MSE 为0.00441,MAE 为 0.0002034,EMD-CNN-GRU并行模型预测效果良好,性能提升明显,适当调整模型参数,还可以进一步提高模型预测表现。通过CNN模型来处理输入的长窗口时间序列数据,能够有效地捕获局部模式和特征,同时把数据送入GRU网络来提取时序特征,最后把时序特征和空间特征进行融合。EMD-CNN-GRU并行模型效果明显,可见其性能的优越性。
注意调整参数:
-
可以适当调整CNN中卷积池化的层数和维度,微调学习率;
-
调整GRU网络层数和维度,增加更多的 epoch (注意防止过拟合)
-
可以改变滑动窗口长度(设置合适的窗口长度)
3.5 结果可视化
相关文章:

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型
目录 前言 1 风速数据EMD分解与可视化 1.1 导入数据 1.2 EMD分解 2 数据集制作与预处理 2.1 先划分数据集,按照8:2划分训练集和测试集 2.2 设置滑动窗口大小为96,制作数据集 3 基于Pytorch的EMD-CNN-GRU并行模型预测 3.1 数据加载&a…...

【Stm32-F407】全速DAP仿真器下载程序
文章内容如下: 1) 全速DAP仿真器简介2) 全速DAP仿真器下载程序流程 1) 全速DAP仿真器简介 1)全速DAP仿真器简介 DAP全称 Data Acquisition Processor,是一种用于数据采集和实时控制的设备。本文使用的全速DAP仿真器遵循ARM公司的CMSIS-DAP标准ÿ…...
ArcGIS Pro SDK导出的几何XML和Json
本博主会持续更新关于ArcGIS Pro SDK的相关内容,请读者关注一下 圆 XML <PolygonN xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xmlns:xs"http://www.w3.org/2001/XMLSchema" xmlns:typens"http://www.esri.com/schemas/…...

随笔记录-springboot_LoggingApplicationListener+LogbackLoggingSystem
环境:springboot-2.3.1 加载日志监听器初始化日志框架 SpringApplication#prepareEnvironment SpringApplicationRunListeners#environmentPrepared EventPublishingRunListener#environmentPrepared SimpleApplicationEventMulticaster#multicastEvent(Applicati…...

超级计算机与天气预报:精准预测的科技革命
超级计算机与天气预报:精准预测的科技革命 一、引言 随着科技的飞速发展,超级计算机已经成为现代社会不可或缺的一部分。它们在科研、工业、军事等领域发挥着重要作用,其中天气预报是一个颇具代表性的应用领域。本文将探讨超级计算机在天气…...
【uniapp小程序-分享】
//分享到聊天onShareAppMessage() {let shareMessage {title: this.liveInfo.wx_title,path: /subPages/livePages/liveCourse/live_course_info?courseid this.courseid,imageUrl: this.liveInfo.wx_thumb};let shearMsg uni.getStorageSync(shearImg this.courseid);if (…...

思幻二次元风格的工作室个人引导页源码
思幻工作室个人引导页源码已经完成开发!该源码支持三端自适应,并且具备赞助功能。我们选择了当前点赞量最高的配色方案,打造了一个独特的二次元风格引导页。经过在美国服务器上进行的测试,效果令人满意,网页加载速度达…...

Rsync+notify文件实时同步工具
rsync ( Remote sync,远程同步) 是一个开源的快速备份工具,可以在不同主机之间镜像同步整个目录树,支持增量备份,并保持链接和权限,且采用优化的同步算法,传输前执行压缩,因此非常适用于异地备…...

小信砍柴的题解
目录 原题描述: 时间:1s 空间:256M 题目描述: 输入格式: 输出格式: 样例1输入: 题目大意: 主要思路: 注意事项: 总代码: 原题描述&#…...
华为OD机试 - 跳格子3(Java JS Python C)
题目描述 小明和朋友们一起玩跳格子游戏, 每个格子上有特定的分数 score = [1, -1, -6, 7, -17, 7], 从起点score[0]开始,每次最大的步长为k,请你返回小明跳到终点 score[n-1] 时,能得到的最大得分。 输入描述 第一行输入总的格子数量 n 第二行输入每个格子的分数 sc…...

每天五分钟计算机视觉:谷歌的Inception模块的计算成本的问题
计算成本 Inception 层还有一个问题,就是计算成本的问题,我们来看一下55 过滤器在该模块中的计算成本。 原始图片为28*28*192经过32个5*5的过滤操作,它的计算成本为: 我们输出28*28*32个数字,对于输出的每个数字来说,你都需要执行 55192 (5*5为卷积核的大小,192为通道…...

最新AI创作系统ChatGPT系统源码+DALL-E3文生图+支持AI绘画+GPT语音对话功能
一、AI创作系统 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI…...

78-C语言-完数的判断,以及输出其因子
简介:一个数如果恰好等于它的因子之和,这个数就称为完数,C语言编程找出1000之内的所有完数,并输出其因子。因子可以整除该数字的数, 如6的因子:1 2 3,6%10 6%20 6%30 解释全在注…...

C# 使用FluentHttpClient请求WebApi
写在前面 FluentHttpClient 是一个REST API 异步调用 HTTP 客户端,调用过程非常便捷,采用流式编程,可以将所有请求所需的参数一次性发送,并直接获取序列化后的结果。 老规矩从NuGet上安装该类库: 这边一定要认准是 P…...

AXure交互及案列
AXure交互及案列 1.交互样式简介2.axure交互事件简介3.axure交互动作简介4.axure情形简介2.完成案列1.登录案列2.省市联动案列3.左侧联动 1.交互样式简介 Axure是一种强大的原型设计工具,它允许用户创建高保真的交互式原型,用于演示和测试Web和移动应用…...

美颜SDK技术对比,深入了解视频美颜SDK的工作机制
如何在实时视频中呈现更加自然、美丽的画面,而这正是美颜SDK技术发挥作用的领域之一。本文将对几种主流视频美颜SDK进行深入比较,以揭示它们的工作机制及各自的优劣之处。 随着科技的不断进步,美颜技术已经从简单的图片处理发展到了视频领域…...
OkHttp ,使用 HttpUrl.Builder 来添加查询参数并添加到请求对象
在使用 OkHttp 中,你可以使用 HttpUrl.Builder 来添加查询参数并将其添加到请求对象中。下面是一个示例代码: import okhttp3.HttpUrl; import okhttp3.OkHttpClient; import okhttp3.Request; import okhttp3.Response;public class Main {public stat…...

图片速览 PoseGPT:基于量化的 3D 人体运动生成和预测(VQVAE)
papercodehttps://arxiv.org/pdf/2210.10542.pdfhttps://europe.naverlabs.com/research/computer-vision/posegpt/ 方法 将动作压缩到离散空间。使用GPT类的模型预测未来动作的离散索引。使用解码器解码动作得到输出。 效果 提出的方法在HumanAct12(一个标准但小规…...

Java对象结构
Java 对象(Object 实例)结构包括三部分:对象头、对象体、对齐字节。 Object的三个部分 对象头包括三个字段,第一个字段叫做 Mark Word(标记字),用于存储自身运行时的数据 例如 GC 标志位、哈希码、锁状态等信息。 第二个字段叫做 Class Pointer(类对象…...
基于redis的分布式锁实现方案
3. 基于redis的分布式锁实现方案: redis集群,原理是因为redis单线程串行处理. (1). SETNX方案: ①. SETNX(Set if not exists):a. 命令在指定的key不存在时,为key设置指定的值.b. SETNX Key Value设置成功,返回1.设置失败,返回0.c. 没有有效期的②. 原子操作(多个执行命令):Mu…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...