当前位置: 首页 > news >正文

回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)

回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)

目录

    • 回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

基本介绍

1.回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)。出图包括迭代曲线图、预测效果图等等。
2.matlab 版本要求2020b及以上版本 程序已调试好可以直接运行(数据直接在Excel中替换)
采用优化算法对随机配置网络SCN的尺度因子Lambdas和正则化系数r进行优化,以北方苍鹰优化算法为例.
3.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
4.附赠示例数据,直接运行main文件一键出图[灯泡]评价指标包括:R2、MAE、MSE、MAPE、RMSE等,图很多.

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)

回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图) 目录 回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)效果一览基本介绍…...

Bezier 曲线 2D

Bezier 曲线于 1962 年由法国雪铁龙汽车公司的工程师 Bezier 所发表,主要应用于汽车的外形设计。虽然 Bezier 曲线早在 1959 年便由法国雷诺汽车公司的 De Casteljau 运用递推算法开发成功,但是 Bezier 却给出了曲线的详细的曲线计算公式。所以&#xff…...

Linux静态ip

Linux静态ip Ⅰ、修改静态ip Ⅰ、修改静态ip 修改静态ip必须是root用户 su root //切换root用户 ip a //查看修改前的动态ipvi /etc/sysconfig/network-scripts/ifcfg-ens33 //打开网卡配置文件,修改一处,新增四处 BOOTPROTO&quo…...

一种基于外观-运动语义表示一致性的视频异常检测框架 论文阅读

A VIDEO ANOMALY DETECTION FRAMEWORK BASED ON APPEARANCE-MOTION SEMANTICS REPRESENTATION CONSISTENCY 论文阅读 ABSTRACT1. INTRODUCTION2. PROPOSED METHOD3. EXPERIMENTAL RESULTS4. CONCLUSION阅读总结: 论文标题:A VIDEO ANOMALY DETECTION FRA…...

Netty—NIO万字详解

文章目录 NIO基本介绍同步、异步、阻塞、非阻塞IO的分类NIO 和 BIO 的比较NIO 三大核心原理示意图NIO的多路复用说明 核心一:缓存区 (Buffer)Buffer类及其子类Buffer缓冲区的分类MappedByteBuffer类说明: 核心二:通道 (Channel)Channel类及其…...

面试经典150题(32-37)

leetcode 150道题 计划花两个月时候刷完,今天(第十五天)完成了6道(32-37)150: 今天刚好有点没精神的感觉,然后碰到的题也不难。。天意!!! 32.(289. 生命游戏&#xff0…...

手撕分布式缓存---HTTP Client搭建

经过上个章节的学习,我们已经实现了一致性哈希算法,这个算法保证我们可以在节点发生变动时,最少的key请求受到影响,并返回这个节点的名称;这很大程度上避免了哈希雪崩和哈希穿透的问题。这个章节我们要基于此实现完整的…...

word如何快速制作简易代码块

先上解决方案。 方式一(全自动): typora编辑,导出选择word文档即可。内网环境,故放弃。 方式二(全手动): 在修改文档时,左侧会有“段落布局”按钮,点击该按…...

Linux常用网络指令

网络参数设定使用的指令 手动/自动设定与启动/关闭 IP 参数&#xff1a;ifconfig, ifup, ifdown ifconfig ifconfig常用于修改网络配置以及查看网络参数的指令 [rootwww ~]# ifconfig {interface} {up|down} < 观察与启动接口 [rootwww ~]# ifconfig interface {options…...

Spark on Yarn 安装配置实验(3.1.1)

子任务二: Spark on Yarn 安装配置 本任务需要使用 root 用户完成相关配置, 已安装 Hadoop 及需要配置前置环境,具体要求如下: 1 、从宿主机 /opt 目录下将文件 spark-3.1.1-bin-hadoop3.2.tgz 复制到容器 Master 中的 /opt/software (若 路径不存在,则需新…...

详解YOLOv5网络结构/数据集获取/环境搭建/训练/推理/验证/导出/部署

一、本文介绍 本文给大家带来的教程是利用YOLOv5训练自己的数据集&#xff0c;以及有关YOLOv5的网络结构讲解/数据集获取/环境搭建/训练/推理/验证/导出/部署相关的教程&#xff0c;同时通过示例的方式让大家来了解具体的操作流程&#xff0c;过程中还分享给大家一些好用的资源…...

ansible(不能交互)

1、定义 基于python开发的一个配置管理和应用部署工具&#xff0c;在自动化运维中异军突起&#xff0c;类似于xshell一键输入的工具&#xff0c;不需要每次都切换主机进行操作&#xff0c;只要有一台ansible的固定主机&#xff0c;就可以实现所有节点的操作。不需要agent客户端…...

黑马点评06分布式锁 2Redisson

实战篇-17.分布式锁-Redisson功能介绍_哔哩哔哩_bilibili 1.还存在的问题 直接实现很麻烦&#xff0c;借鉴已有的框架。 2.Redisson用法 3.Redisson可重入原理 在获取锁的时候&#xff0c;看看申请的线程和拿锁的线程是否一致&#xff0c;然后计算该线程获取锁的次数。一个方法…...

深度剖析知识图谱:方法、工具与实战案例

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 知识图谱作为一种强大的知识表示和关联技术&am…...

Oracle中的dblink简介

Oracle中的dblink简介 是一种用于在不同数据库之间进行通信和数据传输的工具。它允许用户在一个数据库中访问另一个数据库中的对象&#xff0c;而无需在本地数据库中创建这些对象。 使用dblink&#xff0c;用户可以在一个数据库中执行SQL语句&#xff0c;然后访问另一个数据库中…...

ubuntu安装显卡驱动过程中遇到的错误,及解决办法!

ubuntu安装显卡驱动的过程中&#xff0c;可能会遇到以下问题&#xff0c;可以参考解决办法&#xff01; 问题1&#xff1a; ​ ERROR: An error occurred while performing the step: "Building kernel modules". See /var/log/nvidia-installer.log for details. …...

【程序】STM32 读取光栅_编码器_光栅传感器_7针OLED

文章目录 源代码工程编码器基础程序参考资料 源代码工程 源代码工程打开获取&#xff1a; http://dt2.8tupian.net/2/28880a55b6666.pg3这里做了四倍细分&#xff0c;在屏幕上显示 速度、路程、方向。 接线方法&#xff1a; 单片机--------------串口模块 单片机的5V-------…...

TestSSLServer4.exe工具使用方法简单介绍(查SSL的加密版本SSL3或是TLS1.2)

一、工具使用方法介绍 工具使用方法参照&#xff1a;http://www.bolet.org/TestSSLServer/ 全篇英文看不懂&#xff0c;翻译了下&#xff0c;能用到的简单介绍如下&#xff1a; 将下载的TestSSLServer4.exe工具放到桌面上&#xff0c;CMD命令行进入到桌面目录&#xff0c;执…...

新年跨年烟花超酷炫合集【内含十八个烟花酷炫效果源码】

❤️以下展示为全部烟花特效效果 ❤️下方仅展示部分代码 ❤️源码获取见文末 🎀HTML5烟花喷泉 <style> * {padding:0;margin:0; } html,body {positi...

计算机网络考研辨析(后续整理入笔记)

文章目录 体系结构物理层速率辨析交换方式辨析编码调制辨析 链路层链路层功能介质访问控制&#xff08;MAC&#xff09;信道划分控制之——CDMA随机访问控制轮询访问控制 扩展以太网交换机 网络层网络层功能IPv4协议IP地址IP数据报分析ICMP 网络拓扑与转发分析&#xff08;重点…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...