当前位置: 首页 > news >正文

深度学习中的高斯分布

1 高斯分布数学表达

1.1 什么是高斯分布

高斯分布(Gaussian Distribution)又称正态分布(Normal Distribution)。高斯分布是一种重要的模型,其广泛应用于连续型随机变量的分布中,在数据分析领域中高斯分布占有重要地位。由于中心极限定理(Central Limit Theorem)的广泛应用,高斯分布在统计学上非常重要。中心极限定理表明,由一组独立同分布,并且具有有限的数学期望和方差的随机变量X1,X2,X3,...Xn构成的平均随机变量Y近似的服从正态分布当n趋近于无穷。另外众多物理计量是由许多独立随机过程的和构成,因而往往也具有高斯分布。

b9e26c4666824f979a031bbcf852ef0d.png

高斯分布的概率密度函数曲线呈钟形,因此又经常称之为钟形曲线。即随机变量X服从一个为数学期望μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。在高斯分布中,以数学期望μ表示钟型的中心位置(也即曲线的位置),而标准差(standard deviation)σ表征曲线的离散程度。

ffcc84892ff2471ba32cec367addd9d4.png

当数学期望为0(u=0),方差为1(σ=1)时,该分布为标准正态分布(standard normal distribution)。下图展示了几种不同类型的正态分布概率密度函数曲线。

a22a739e570b48579be86dfdc530da83.png

1.2 关键概念

  • 概率函数:把事件概率表示成关于事件变量的函数

  • 概率分布函数:一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。

  • 概率密度函数:

 概率密度等于变量在一个区间(事件的取值范围)的总的概率除以该段区间的长度。

概率密度函数是一个描述随机变量在某个确定的取值点附近的可能性的函数。 

1.3 一元高斯分布

若随机变量X服从均值为μ,方差为σ2的高斯分布,那么:

93893a32f7874ece9e9f3b5d73546781.png

高斯分布的图形像钟一样,下图展示了一般正态分布的图形。其中 μ = 0 , σ = 1。
baaca883a73640c9a291d4c35e7574ce.png

对于一个非标准的正态分布,可以由标准正态分布经过以下3步变换得到:

  • 将x向右移动u个单位

  • 将密度函数x轴延展sigma倍

  • 将函数密度图像y轴压缩σ倍

如果X服从分布,X ∼ N(μ, σ2),那么具有以下的性质:

3b2f8862899240668e2b75938e50a72f.png

1.4 多元高斯分布

1.4.1 独立多元高斯分布

f7a2d27f4dea419694850a77874e5628.png

  如果我们令:

77621a1fa4dc4b63baa7d6755a910237.png

  我们有:

87dce74c1b944321967703885e08f879.png

  使用矩阵的形式来表示的话,则有:

114ef4774692427da9f1cc60a4e185cb.png

  定义符号:

5ccb02dbf1ad49d18d24720b5577a514.png

7a0d7999ed70444c8cd8d7f142115f86.png

1baf5c7d21e146d7bc6448b49bcce6d1.png

  变量代换可得:

3c11075cb50d40eda2c11ee93998281c.png

下面以 eq?x%3D%5Bx_%7B1%7D%2Cx_%7B2%7D%5D为例,画出二元高斯分布在变量之间相互独立的图像:

f4f850e784dd42dc8b6b65920a8af2e7.png

5051d079d57d4e36929f8f62f88167c4.png

e991ab49488a47758164143ecafe3f32.png

7bfbdd39dead4c008dc2bc2586d08200.png

766afa687e944b459373c13083ea4272.png

0e4ffd072adb4756bfa2d886cdabf51a.png

606eff5a5d384401aadc3d4f44ad8c71.png

d99bca3882f343738907498fe303caf9.png

由上图可以看出,当变量之间相互独立的时候:

  • 当协方差矩阵的特征值越小时,分布函数图像越高越尖。

  • 当协方差矩阵的特征值相等时,分布函数图像在X1,X2面上的投影是圆形的。当特征值不相等时,分布函数图像在X1,X2面上的投影是椭圆形的,X1,X2相互独立时,椭圆的长轴和短轴平行与坐标轴。且变量对应的特征值越大,该变量分布的范围越分散,在二元高斯分布中,对应特征值大的变量在函数投影图像中对应的是椭圆的长轴。高维的高斯分布情况可以按照这个规律进行推广。

1.4.2 多元相关变量高斯分布

当变量之间存在相关关系的时候,协方差矩阵不再是对角阵,而是一个对称的矩阵,矩阵的每个元素eq?%5Csigma%20_%7Bi%2Cj%7D%5E%7B2%7D表示变量eq?i%2Cj的协方差。

152c881da9bd4db6a0bbddff0b9c9bad.png

2d5ffd4b31f3485baa373da7225d55d1.png

1dec202296a3402e83241281a5731dc9.png

6e222cb944e749279ff028edb7def06b.png

从上面2个图像中可以看出,变量之间具有相关关系时,与变量之间相互独立最大的区别是,投影面的椭圆长短轴不再平行与坐标轴。如果我们将坐标轴X1,X2旋转一下,与椭圆的长短轴平行,如下图所示:

b744d7fc5fc14e7593b00cbdff6f4a2f.png

由独立变量的二元高斯分布知,那么在新的坐标系下, eq?x_%7B1%7D%5E%7B%27%7D%2Cx_%7B2%7D%5E%7B%27%7D​是相互独立的。上述过程称作为去相关性,这也是经典的降维方法主成分分析PCA的基础。以下是新坐标系的求解和原坐标系上的点在新坐标系下的坐标数学表达。
根据协方差矩阵的特征方程求解协方差矩阵的单位正交特征向量(先求出特征向量,再进行正交化与单位化),

39f8c63f1b724c2d975ffb89616196e3.png

55471f5b51bc4c309e7d757ade9e269f.png

此时eq?x_%7B1%7D%5E%7B%27%7D%2Cx_%7B2%7D%5E%7B%27%7D之间没有相关关系。

2 高斯分布在深度学习中的作用

822cc8dd9b354d288a4253eece2504ad.webp

2.1 高斯分布广泛使用的原因

高斯分布(也称为正态分布或钟形曲线)在深度学习中被广泛应用的原因有以下几个方面:

  • 中心极限定理:高斯分布具有重要的数学性质,其中最重要的是中心极限定理。该定理指出,对于大多数随机变量的和,其分布趋向于高斯分布。这意味着在实际问题中,许多现象可以通过高斯分布来近似描述。

  • 参数化灵活性:高斯分布具有两个重要参数,均值和标准差,可以通过这两个参数来灵活地调整分布的形状。这使得高斯分布能够适应不同数据集的特征,并具有较强的拟合能力。

  • 中心性和离散性度量:高斯分布在数学上具有对称性,其均值和中位数相等,这使得它成为测量数据集中心性的一种常用方法。此外,标准差作为高斯分布的度量,能够衡量数据的离散程度。

  • 最大似然估计:在概率统计中,最大似然估计是一种常用的参数估计方法。高斯分布的参数估计可以通过最大似然估计进行计算,这使得高斯分布的应用更为方便。

在实际意义上,高斯分布在自然界和社会现象中出现的频率很高。许多自然和社会现象具有随机性,并且可以用高斯分布来描述。例如,在测量误差、人口统计、金融市场波动等领域中,高斯分布都被广泛应用。

2.2 高斯分布的应用场景

615baebf530f487bb1929642bf4d6abc.png

高斯分布(也称为正态分布)在深度学习模型中扮演着多个重要角色。以下是一些主要的应用场景:

  • 参数初始化:在神经网络的训练开始时,通常需要对权重进行初始化。使用高斯分布(尤其是标准正态分布)来初始化权重可以帮助在训练初期避免激活函数的饱和,确保初始权重既不太大也不太小。

  • 正则化:在某些情况下,高斯分布被用作先验分布,加入到损失函数中作为正则化项。这种正则化(如 L2 正则化)可以帮助防止过拟合,通过对权重的大小进行约束。

  • 生成模型:在生成对抗网络(GANs)和变分自编码器(VAEs)等生成模型中,高斯分布常用于生成潜在空间中的随机噪声。这些噪声向量后续被用来生成数据(如图像)。

  • 概率建模:在许多概率深度学习模型中,高斯分布用于建模输出变量,尤其是在处理连续值(如回归问题)时。

  • 激活函数:尽管不太常见,但在某些特殊的网络结构中,可以使用高斯函数作为激活函数,以模拟特定的生物神经网络行为。

  • 不确定性估计:在贝叶斯神经网络中,权重和偏置被视为随机变量,通常使用高斯分布来描述它们的不确定性。这种方法可以提供模型预测的不确定性估计。

  • 特征提取:在某些图像处理技术中,例如高斯模糊,使用高斯分布作为权重核,可以帮助模型在训练过程中更好地提取图像特征。

ef35caf1b5f44080b34af6b43eefc303.png

高斯分布由于其数学属性和在自然界中的普遍性,成为深度学习中的一个重要工具。它在处理不确定性、正则化和概率建模方面尤为重要。

 

 

 

相关文章:

深度学习中的高斯分布

1 高斯分布数学表达 1.1 什么是高斯分布 高斯分布(Gaussian Distribution)又称正态分布(Normal Distribution)。高斯分布是一种重要的模型&#xff0c;其广泛应用于连续型随机变量的分布中&#xff0c;在数据分析领域中高斯分布占有重要地位。由于中心极限定理(Central Limit…...

【已解决】Atlas 导入 Hive 元数据,执行 import-hive.sh 报错

部署完 Atlas 之后&#xff0c;尝试导入 Hive 元数据&#xff0c;遇到了一些错误&#xff0c;特此记录一下&#xff0c;方便你我他。 执行 import-hive.sh 报错 [omchadoop102 apache-atlas-2.2.0]$ hook-bin/import-hive.sh Using Hive configuration directory [/opt/module…...

在 Windows PC 上轻松下载并安装 FFmpeg

FFmpeg 是一种开源媒体工具&#xff0c;可用于将任何视频格式转换为您需要的格式。该工具只是命令行&#xff0c;因此它没有图形、可点击的界面。如果您习惯使用常规图形 Windows 程序&#xff0c;安装 FFmpeg 一开始可能看起来很复杂&#xff0c;但不用担心&#xff0c;它;很简…...

21.Servlet 技术

JavaWeb应用的概念 在Sun的Java Servlet规范中&#xff0c;对Java Web应用作了这样定义&#xff1a;“Java Web应用由一组Servlet、HTML页、类、以及其它可以被绑定的资源构成。它可以在各种供应商提供的实现Servlet规范的 Servlet容器 中运行。” Java Web应用中可以包含如下…...

【Hive】——DDL(PARTITION)

1 增加分区 1.1 添加一个分区 ALTER TABLE t_user_province ADD PARTITION (provinceBJ) location/user/hive/warehouse/test.db/t_user_province/provinceBJ;必须自己把数据加载到增加的分区中 hive不会帮你添加 1.2 一次添加多个分区 ALTER TABLE table_name ADD PARTITION…...

SpringBoot 源码解析4:事件监听器

SpringBoot 源码解析4&#xff1a;事件监听器 1. 初始化监听器2. 创建事件发布器 SpringApplicationRunListeners3. 事件分发流程3.1 SimpleApplicationEventMulticaster#multicastEvent3.2 获取监听器 AbstractApplicationEventMulticaster#getApplicationListeners3.3 Abstra…...

使用 FastAPI 和 Vue.js 实现前后端分离

简介 前后端分离是现代 Web 开发的趋势。使用 FastAPI 和 Vue.js 可以构建一个高效、灵活且易于维护的 Web 应用。FastAPI 提供了高性能的后端服务&#xff0c;而 Vue.js 作为一种渐进式 JavaScript 框架&#xff0c;可以构建动态的前端界面。本文将详细介绍如何使用 FastAPI …...

算法基础之SPFA判断负环

SPFA判断负环 核心思想&#xff1a;spfa算法 当遍历一个点时 cnt数组记录边数 若有负环 边数会无限1 cnt>n是即为有负环 #include<iostream>#include<cstring>#include<algorithm>#include<queue>using namespace std;const int N 2010 , M 10010…...

一些常用的Linux命令及其简要说明(持续更新)

1. cd&#xff1a;改变当前工作目录。 cd [directory]#例如 cd /home/user 2. ls&#xff1a;列出目录内容。 ls [-options] [file/directory]#例如 ls -l, ls /etc 3. pwd&#xff1a;显示当前工作目录。 pwd 4. mkdir&#xff1a;创建新目录。 mkdir [directory]#例…...

开发企业展示小程序的关键步骤和技巧

随着移动互联网的快速发展&#xff0c;小程序已经成为企业展示形象、推广产品和服务的重要工具。拥有一个优秀的小程序可以帮助企业提高品牌知名度&#xff0c;吸引更多潜在客户&#xff0c;提升用户体验。以下是拥有一个展示小程序的步骤&#xff1a; 确定需求和目标 首先&am…...

Python-Selenium-使用 pywinauto 实现 Input 上传文件

当前环境&#xff1a;Win10 Python3.7 pywinauto0.6.8&#xff0c;selenium3.14.1 示例代码 from pywinauto import Desktop import osapp Desktop() dialog app[打开] dialog[Edit].set_edit_text(os.getcwd() .\\example-01.jpg) dialog[Button].click() 其他方法&…...

Go语言运行时与自家平台对比后认识

引子 以前就了解Go语言&#xff0c;因为其天生为并发、并行而生&#xff0c;且在语言层面就进行了内秉设计。 总想对比于我们自研的分布式并发、并行平台&#xff0c;以利于得到一些新认识 &#xff1a;&#xff09; Go官网资料 在Go的官网资料提供了很好的资料和知识库 初…...

leetcode 450. 删除二叉搜索树中的节点

leetcode 450. 删除二叉搜索树中的节点 题目 给定一个二叉搜索树的根节点 root 和一个值 key&#xff0c;删除二叉搜索树中的 key 对应的节点&#xff0c;并保证二叉搜索树的性质不变。返回二叉搜索树&#xff08;有可能被更新&#xff09;的根节点的引用。 一般来说&#x…...

小红书可观测 Metrics 架构演进,如何实现数十倍性能提升?

在当前云原生时代&#xff0c;随着微服务架构的广泛应用&#xff0c;云原生可观测性概念被广泛讨论。可观测技术建设&#xff0c;将有助于跟踪、了解和诊断生产环境问题&#xff0c;辅助开发和运维人员快速发现、定位和解决问题&#xff0c;支撑风险追溯、经验沉淀、故障预警&a…...

selenium学习

前期准备 pip install selenium 获取浏览器驱动 我使用的浏览器是Chrome&#xff0c;所以这里只介绍关于Chrome获取浏览器驱动的方法&#xff1a; 需要注意的是&#xff1a;selenium 4.x 对之前版本的部分API调用方式进行了调整&#xff0c;这里就包括关于浏览器获取驱动的方式…...

前端开发新趋势:Web3、区块链和虚拟现实

目录 前言 Web3&#xff1a;下一代互联网 区块链技术 去中心化应用程序&#xff08;DApps&#xff09; 区块链&#xff1a;重塑数字世界 数字钱包 NFT&#xff08;非同质化代币&#xff09; 虚拟现实&#xff1a;沉浸式体验 WebVR和WebXR 三维图形 新挑战与机会 性…...

如何安装运行Wagtail并结合cpolar内网穿透实现公网访问网站界面

文章目录 前言1. 安装并运行Wagtail1.1 创建并激活虚拟环境 2. 安装cpolar内网穿透工具3. 实现Wagtail公网访问4. 固定的Wagtail公网地址 前言 Wagtail是一个用Python编写的开源CMS&#xff0c;建立在Django Web框架上。Wagtail 是一个基于 Django 的开源内容管理系统&#xf…...

【>D:\10\Debug\RCa00828(34): fatal error RC1022: expected ‘#endif‘】

1>D:\10\Debug\RCa00828(34): fatal error RC1022: expected ‘#endif’ The error message you’re seeing, fatal error RC1022: expected ‘#endif’, indicates that the resource compiler encountered an issue when processing a resource script file (typically w…...

使用vite搭建项目时,在启动vite后,浏览器显示页面:找不到localhost的网页

现象 在使用前端工具vite&#xff08;版本5&#xff09;&#xff0c;搭建vue3项目时&#xff0c;启动vite&#xff0c;浏览器显示页面&#xff1a;找不到localhost的网页, 起初怀疑是 未加参数 --host0.0.0.0,导致&#xff0c;后加上该参数后问题依旧 解决 将index.html页面…...

libp2p 快速开始

文章目录 第一部分&#xff1a;libp2p 快速入门一、什么是libp2plibp2p 发展历程libp2p的特性p2p 网络和我们熟悉的 client/server 网络的区别&#xff1a; 二、Libp2p的实现目标三、Libp2p的用途四、运行 Libp2p 协议流程libp2p 分为三层libp2p 还有一个局域网节点发现协议 mD…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...