当前位置: 首页 > news >正文

核和值域的关系:什么是矩阵的秩?

核和值域的关系:什么是矩阵的秩?

这篇博客将介绍一个任意矩阵的核和值域的关系,并由此说明矩阵秩的意义、子空间维数、子空间正交。

1、矩阵的核:N(A)

A ∈ C m × n A\in C^{m\times n} ACm×n,矩阵的核,记作N(A),N是nullity的首字母。
N ( A ) = { x ∣ A x = 0 , x ∈ C n } N(A)=\{x|Ax=0,x\in C^n \} N(A)={xAx=0,xCn}
A的核,其实就是齐次方程组Ax=0的所有解(解空间)。下面介绍解的情况。

  1. rank(A)=n,则有唯一解,且唯一解为0,N(A)={0}
  2. rank(A)=r<n,则有无穷多解,且基本未知数个数为r,自由未知数个数为n-r,dim(N(A))=n-r

可用行阶梯形来理解上述定理。注意,行初等变换不改变矩阵的解空间
A x = 0 ⇒ A ~ x = 0 A ~ = [ a 1 , 1 a 1 , 2 a 1 , 3 … a 1 , n a 2 , 2 a 2 , 3 … a 2 , n ⋮ ⋱ ⋱ ⋮ ( 0 ) ⋱ a n − 1 , n 0 ⋯ a n , n ] Ax=0 \Rightarrow \tilde Ax=0\\ {\mathbf {\tilde A}}={\begin{bmatrix}a_{{1,1}}&a_{{1,2}}&a_{{1,3}}&\ldots &a_{{1,n}}\\ &a_{{2,2}}&a_{{2,3}}&\ldots &a_{{2,n}}\\ \vdots &&\ddots &\ddots &\vdots \\ &(0)&&\ddots &a_{{n-1,n}}\\ 0&&\cdots &&a_{{n,n}}\end{bmatrix}} Ax=0A~x=0A~= a1,10a1,2a2,2(0)a1,3a2,3a1,na2,nan1,nan,n
当rank(A)=n时,a_nn ≠ 0,因此x_n=0;关注第n-1行: a n − 1 , n − 1 x n − 1 + a n − 1 , n x n = 0 a_{n-1,n-1}x_{n-1}+a_{n-1,n}x_{n}=0 an1,n1xn1+an1,nxn=0,连锁反应将使得x_i=0, i=1~n;

当rank(A)=r是,a_rr ≠ 0,因此x_r=0,所以x=[0,0,0,*,*,*],r个0,n-r个任意值。

2、矩阵的值域:R(A)

A ∈ C m × n A\in C^{m\times n} ACm×n,矩阵的值域,记作R(A),R是range的首字母。
R ( A ) = { y ∈ C m ∣ y = A x , x ∈ C n } R(A)=\{y\in C^m|y=Ax,x\in C^n \} R(A)={yCmy=Ax,xCn}
值域就是A的列向量组所能张成的最大空间。

  1. dim(R(A)) = rank(A) = rank(AH) = dim(R(AH))
  2. 秩-零化度定理:rank(A)+nullity(A)=n,nullity(A)=dim(N(A))

可以从线性表出的角度去理解。注意,矩阵的分块乘法。
y = A x = ( α 1 , α 2 , ⋯ , α n ) ( x 1 , x 2 , ⋯ , x n ) T = x 1 α 1 + x 2 α 2 + ⋯ + x n α n \begin{aligned} y &=Ax \\ &= (\alpha_1,\alpha_2,\cdots,\alpha_n)(x_1,x_2,\cdots,x_n)^T\\ &= x_1\alpha_1+x_2\alpha_2+\cdots+x_n\alpha_n \end{aligned} y=Ax=(α1,α2,,αn)(x1,x2,,xn)T=x1α1+x2α2++xnαn

3、子空间正交

所谓子空间正交,就是子空间W1的所有向量和W2所有向量正交。
< y , x > = < A x , x > = ( A x ) H x = x H A H x <y,x>=<Ax,x>=(Ax)^Hx=x^HA^Hx <y,x>=<Ax,x>=(Ax)Hx=xHAHx
因此R(A)和N(AH)正交。

  1. $R(A) \cap N(A^H)={0} $
  2. R ( A ) ⊕ N ( A H ) = C m R(A) \oplus N(A^H) = C^m R(A)N(AH)=Cm

⊕ \oplus 是直和,只有两个正交的空间才能进行直和运算。

直和:对于V1+V2中任何一个向量a=a1+a2,其中a1属于V1,a2属于V2,这种表示是唯一的,则称V1+V2为直和。

4、子空间维数定理

V 1 + V 2 = { x 1 + x 2 ∣ x 1 ∈ V 1 , x 2 ∈ V 2 } V 1 ∩ V 2 = { x ∣ x ∈ V 1 , x ∈ V 2 } V_1+V_2=\{x_1+x_2|x_1\in V_1,x_2\in V_2 \}\\ V_1\cap V_2=\{x|x\in V_1,x\in V_2 \} V1+V2={x1+x2x1V1,x2V2}V1V2={xxV1,xV2}

子空间维数定理:
d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dim(V_1)+dim(V_2)=dim(V_1+V_2)+dim(V1\cap V_2)\\ dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2)
可从三维空间理解。V1和V2是两个不相同的平面,各自维数为2,相加为4。和空间为整个三维空间,交空间为一条直线,即一维空间。

5、非齐次线性方程组的解

在第一节介绍了其次线性方程组Ax=0的解,下面介绍非齐次线性方程组Ax=b的解,其中 A ∈ C m × n A\in C^{m\times n} ACm×n A ˉ = [ A , b ] \bar A=[A,b] Aˉ=[A,b]是增广矩阵。

  1. 如果rank(A)=rank( A ˉ \bar A Aˉ)=n,则方程组有唯一解。
  2. 如果rank(A)=rank( A ˉ \bar A Aˉ)=r<n,则方程组有无穷多解。解空间维数为r,即基本未知数有r个,自由未知数有n-r个。
  3. 如果rank(A)<rank( A ˉ \bar A Aˉ),则方程组无解,解空间为空。
  4. 不存在rank(A)>rank( A ˉ \bar A Aˉ)

注意,齐次方程组必定有解,而非齐次方程组可能无解。

相关文章:

核和值域的关系:什么是矩阵的秩?

核和值域的关系&#xff1a;什么是矩阵的秩&#xff1f; 这篇博客将介绍一个任意矩阵的核和值域的关系&#xff0c;并由此说明矩阵秩的意义、子空间维数、子空间正交。 1、矩阵的核&#xff1a;N(A) A ∈ C m n A\in C^{m\times n} A∈Cmn&#xff0c;矩阵的核&#xff0c;记…...

【MyBatis Plus】Service Mapper内置接口讲解

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《MyBatis-Plus》。&#x1f3af;&#x1f3af; &am…...

制作一个简单 的maven plugin

流程 首先&#xff0c; 你需要创建一个Maven项目&#xff0c;推荐用idea 创建项目 会自动配置插件 pom.xml文件中添加以下配置&#xff1a; <project> <!-- 项目的基本信息 --> <groupId>com.example</groupId> <artifactId>my-maven-plugi…...

基于linux系统的Tomcat+Mysql+Jdk环境搭建(三)centos7 安装Tomcat

Tomcat下载官网&#xff1a; Apache Tomcat - Which Version Do I Want? JDK下载官网&#xff1a; Java Downloads | Oracle 中国 如果不知道Tomcat的哪个版本应该对应哪个版本的JDK可以打开官网&#xff0c;点击Whitch Version 下滑&#xff0c;有低版本的&#xff0c;如…...

Ubuntu环境下SomeIP/CommonAPI环境搭建详细步骤

环境搭建 1.Boost安装 下载Boost源码 &#xff1a; https://www.boost.org/users/download/ 编译安装 首先安装编译所需依赖 sudo apt-get install build-essential g sudo apt-get install installpython-dev autotools-dev sudo apt-get install installlibicu-dev buil…...

maven 项目导入异常问题

问题如下 一、 tomcat正再运行的包是哪一个 不同构建、打包情况下分别运行 out\artifacts下 当直接去Project Structure下去构建artifacts 后&#xff0c;运行tomcat 则会在out下target下 reimport项目后,则会在artifacts自动生成部署包。删除tomcat之前deployment 下的包(同…...

在 VMware 虚拟机上安装黑苹果(Hackintosh):免费 macOS ISO 镜像下载及安装教程

在 VMware 虚拟机上安装黑苹果(Hackintosh)&#xff1a;免费 macOS ISO 镜像下载及安装教程 VMware 虚拟机解锁 macOS 安装选项使用 macOS iso 系统镜像安装使用 OpenCore 做引导程序安装 在 VMware 虚拟机上安装黑苹果(Hackintosh)&#xff1a;免费 macOS ISO 镜像下载及安装…...

国产ToolLLM的课代表---OpenBMB机构(清华NLP)旗下ToolBench的安装部署与运行(附各种填坑说明)

ToolBench项目可以理解为一个能直接提供训练ToolLLM的平台&#xff0c;该平台同时构建了ToolLLM的一个开源训练指令集。&#xff0c;该项目是OpenBMB机构&#xff08;面壁智能与清华NLP联合成立&#xff09;旗下的一款产品&#xff0c;OpenBMB机构名下还同时拥有另外一款明星产…...

串口通信(5)-C#串口通信数据接收不完整解决方案

本文讲解C#串口通信数据接收不完整解决方案。 目录 一、概述 二、Modbus RTU介绍 三、解决思路 四、实例 一、概述 串口处理接收数据是串口程序编写的关键...

大数据分析岗是干什么的?

大数据分析岗主要负责从大规模数据集中提取、整理、分析和解释有关业务、市场或其他相关领域的信息的职位。 主要的职责和工作内容如下&#xff1a; 1. 数据收集和整理 收集各种数据源&#xff08;包括结构化、非结构化和半结构化数据&#xff09;&#xff0c;并将其整理成可…...

hadoop运行jar遇到的一个报错

报错信息&#xff1a; 2023-12-19 14:28:25,893 INFO mapreduce.Job: Job job_1702967272525_0001 failed with state FAILED due to: Application application_1702967272525_0001 failed 2 times due to AM Container for appattempt_1702967272525_0001_000002 exited with…...

长短期记忆(LSTM)神经网络-多输入分类

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、部分程序&#xff1a; 四、完整程序下载&#xff1a; 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于Matlab平台编译&am…...

开启创意之旅:免费、开源的噪波贴图(noise texture)生成网站——noisecreater.com详细介绍

在当今数字创意领域&#xff0c;噪波贴图&#xff08;Noise Texture&#xff09;是游戏渲染、游戏开发、美术设计以及影视制作等行业不可或缺的艺术素材之一。为了满足广大创作者的需求&#xff0c;noisecreater.com应运而生&#xff0c;成为一款免费、开源的噪波贴图生成工具。…...

Android Studio问题解决:Gradle Download 下载超时 Connect reset

文章目录 一、遇到问题二、解决办法 一、遇到问题 Gradle Download下载超时Sync了很多次&#xff0c;一直失败 二、解决办法 手动通过gradle网站下载 https://gradle.org/releases/可能也会出现超时&#xff0c;最好开个VPN软件会比较快。 下载好的软件&#xff0c;放到本机的…...

【Python百宝箱】云上翱翔:Python编程者的AWS奇妙之旅

雲端箴言&#xff1a;用Python主持AWS管理交響樂 前言 随着云计算的普及&#xff0c;AWS&#xff08;Amazon Web Services&#xff09;成为了许多组织和开发者首选的云服务提供商。作为Python工程师&#xff0c;深入了解AWS管理工具和库对于高效利用云资源至关重要。本文将引…...

抖音直播间websocket礼物和弹幕消息推送可能出现重复的情况,解决办法

在抖音直播间里&#xff0c;通过websocket收到的礼物消息数据格式如下&#xff1a; {common: {method: WebcastGiftMessage,msgId: 7283420150152942632,roomId: 7283413007005207308,createTime: 1695803662805,isShowMsg: True,describe: 莎***:送给主播 1个入团卡,priority…...

【设计模式--行为型--访问者模式】

设计模式--行为型--访问者模式 访问者模式定义结构案例优缺点使用场景扩展分派动态分派静态分派双分派 访问者模式 定义 封装一些作用于某种数据结构中的各元素的操作&#xff0c;它可以在不改变这个数据结构的前提下定义作用于这些元素的新操作。 结构 抽象访问者角色&…...

[最后一个月征稿、ACM独立出版】第三届密码学、网络安全和通信技术国际会议(CNSCT 2024)

第三届密码学、网络安全和通信技术国际会议&#xff08;CNSCT 2024&#xff09; 2024 3rd International Conference on Cryptography, Network Security and Communication Technology 一、大会简介 随着互联网和网络应用的不断发展&#xff0c;网络安全在计算机科学中的地…...

android —— PopupWindow

一、常用方法&#xff1a; 1、设置显示的位置 // 一个参数 popupWindow.showAsDropDown(v); //参数1: popupWindow关联的view // 参数2和3&#xff1a;相对于关联控件的偏移量popupWindow.showAsDropDown(View anchor, int xoff, int yoff)2、是否会获取焦点 popupWindow.se…...

mysql部署 --(docker)

先查找MySQL 镜像 Docker search mysql &#xff1b; 拉取mysql镜像&#xff0c;默认拉取最新的&#xff1b; 创建mysql容器&#xff0c;-p 代表端口映射&#xff0c;格式为 宿主机端口&#xff1a;容器运行端口 -e 代表添加环境变量&#xff0c;MYSQL_ROOT_PASSWORD是root用户…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...