智能优化算法应用:基于冠状病毒群体免疫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于冠状病毒群体免疫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于冠状病毒群体免疫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.冠状病毒群体免疫算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用冠状病毒群体免疫算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.冠状病毒群体免疫算法
冠状病毒群体免疫算法原理请参考:https://blog.csdn.net/u011835903/article/details/121465952
冠状病毒群体免疫算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
冠状病毒群体免疫算法参数如下:
%% 设定冠状病毒群体免疫优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果


从结果来看,覆盖率在优化过程中不断上升。表明冠状病毒群体免疫算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于冠状病毒群体免疫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于冠状病毒群体免疫算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于冠状病毒群体免疫算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.冠状病毒群体免疫算法4.…...
小型气象站是什么?
随着科技的发展,我们的生活变得越来越便捷。如今,一款名为小型气象站的新兴设备正在逐渐走进我们的生活,为我们的日常生活增添了更多的便利和舒适。 WX-CQ12小型气象站是一种集成了多种传感器和数据采集技术的智能设备,可以实时监…...
官方指定Jmeter配置JVM堆内存方式
1.概述 在使用Jmeter做性能测试过程中,可能会应为默认设置的堆内存值较小出现堆内存溢出问题,此时解决的方式有两种,分布式测试和调大堆内存。下面介绍官方推荐调整堆内存方法。 2.调整Jmeter堆内存 2.1.介绍官方推荐堆内存调整方法(jmete…...
spark-常用算子
一,Transformation变换/转换算子: 这种变换并不触发提交作业,这种算子是延迟执行的,也就是说从一个RDD转换生成另一个RDD的转换操作不是马上执行,需要等到有Action操作的时候才会真正触发。 1.Value数据类型的Transf…...
《opencv实用探索·二十一》人脸识别
Haar级联分类器 在OpenCV中主要使用了两种特征(即两种方法)进行人脸检测,Haar特征和LBP特征。用的最多的是Haar特征人脸检测。 Haar级联分类器是一种用于目标检测的机器学习方法,它是一种基于机器学习的特征选择方法,…...
前端项目配置下载源npm, yarn,pnpm
前端项目配置下载源 npm: npm config set registry registryhttps://registry.npmmirror.com -g验证: npm config get registry yarn: yarn config set registry registryhttps://registry.npmmirror.com -gyarn config get registryyarn找不到, 需要管理员在命令行: set-exec…...
Elasticsearch之ik中文分词篇
Elasticsearch之ik中文分词篇 ik分词器插件ik分词器安装ik分词模式es ik分词测试 ik分词器插件 es在7.3版本已经支持中文分词,由于中文分词只能支持到单个字进行分词,不够灵活与适配我们平常使用习惯,所以有很多对应中文分词出现,…...
2023_Spark_实验三十:测试Flume到Kafka
实验目的:测试Flume采集数据发送到Kafka 实验方法:通过centos7集群测试,将flume采集的数据放到kafka中 实验步骤: 一、 kafka可视化工具介绍 Kafka Tool是一个用于管理和使用Apache Kafka集群的GUI应用程序。 Kafka Tool提供了…...
urllib2 HTTP头部注入
文章目录 注入原理例题 [SWPU 2016]web7 注入原理 参考文章 应用场景是具有SSRF漏洞,结合CRLF注入 我们以redis数据库为例,当存在SSRF时我们伪造以下请求 http://127.0.0.1%0d%0aCONFIG%20SET%20dir%20%2ftmp%0d%0aCONFIG%20SET%20dbfilename%20evil%…...
在 WebRTC 中,Offer/Answer 模型是协商 WebRTC 连接参数的关键部分
在 WebRTC 中,Offer/Answer 模型是协商 WebRTC 连接参数的关键部分。当 Offer 和 Answer 交换失败时,可能涉及到多个原因。以下是一些可能的问题和解决方案: SDP 格式错误: Session Description Protocol(SDPÿ…...
数据结构:图解手撕B-树以及B树的优化和索引
文章目录 为什么需要引入B-树?B树是什么?B树的插入分析B树和B*树B树B*树分裂原理 B树的应用 本篇总结的内容是B-树 为什么需要引入B-树? 回忆一下前面的搜索结构,有哈希,红黑树,二分…等很多的搜索结构&a…...
useConsole的封装,vue,react,htmlscript标签,通用
之前用了接近hack的方式实现了console的封装,目标是获取console.log函数的执行(调用栈所在位置)所在的代码行数。 例如以下代码,执行window.mylog(1)时候,console.log实际是在匿名的箭头函数()>{//这里执行的} con…...
Azure Machine Learning - 提示工程高级技术
本指南将指导你提示设计和提示工程方面的一些高级技术。 关注TechLead,分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,…...
七款创意项目管理软件解决方案推荐:高效项目管理与团队协作工具
企业无论大小,都离不开项目经理、营销团队和创意人员。他们参与各种头脑风暴,为特定目标打造项目。然而,在创意项目管理中,细节决定成败。若处理不当,可能导致项目失败和混乱。 过去,创意项目管理依赖纸质规…...
如何在公网环境下使用Potplayer访问本地群晖webdav中的影视资源
文章目录 本教程解决的问题是:按照本教程方法操作后,达到的效果是:1 使用环境要求:2 配置webdav3 测试局域网使用potplayer访问webdav3 内网穿透,映射至公网4 使用固定地址在potplayer访问webdav 国内流媒体平台的内…...
数据可视化Seaborn
数据可视化Seaborn Seaborn简介Seaborn API第一个Seaborn应用Seaborn基本概念Seaborn图表类型Seaborn数据集Seaborn样式Seaborn调色板Seaborn分面网格Seaborn统计图表Seaborn散点图Seaborn折线图Seaborn柱状图Seaborn箱线图Seaborn核密度估计图Seaborn分类散点图Seaborn回归分…...
AWS S3相关配置笔记
关闭 阻止所有公开访问 存储桶策略(开放外部访问) {"Version": "2012-10-17","Id": "S3PolicyId1","Statement": [{"Sid": "statement1","Effect": "Allow","Principal"…...
linux:linux的小动物们(ubuntu)
1.蒸汽小火车 输入下面的命令下载,再输出sl sudo apt-get install sl sl2.今天你哞了吗 apt-get moo 3.会说话的小牛 输入下面的命令下载一下 sudo apt-get install cowsay输入这个 cowsay jianbing cowsay -l 查看其它动物的名字 然后cowsay -f 跟上动物名&…...
每日一题(LeetCode)----栈和队列--逆波兰表达式求值
每日一题(LeetCode)----栈和队列–逆波兰表达式求值 1.题目(150. 逆波兰表达式求值) 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算…...
2023年第四届 “赣网杯” 网络安全大赛 gwb-web3 Write UP【PHP 临时函数名特性 + 绕过trim函数】
一、题目如下: 二、代码解读: 这段代码是一个简单的PHP脚本,它接受通过GET请求传递的两个参数:‘pass’和’func’: ① $password trim($_GET[pass] ?? );:从GET请求中获取名为’pass’的参数࿰…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
