当前位置: 首页 > news >正文

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用

前言

跟往期sobol区别:
1.sobol计算依赖于验证集样本,无需定义变量上下限。
2.SW-ELM自带激活函数,计算具有phi(x)=e^x激活函数的单层神经网络的一阶和总Sobol指数
本篇文章将演示如何实现波形叠加极限学习机SW-ELM来计算示例模型的一阶和总Sobol指数。

共有四个部分:
1.生成训练和验证集
2.构建ELM的参数。要使用多少个基函数?使用什么正则化参数?要测试哪些稀疏化参数?
3.SW-ELM代理构建并执行全局敏感性分析
4.绘图

一、生成训练和验证集

clear all
res = xlsread('数据集.xlsx');%%  划分训练集和测试集
%temp = randperm(103);
temp=1:103
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

二、ELM参数设置

model_data.nneurons=500;%隐藏层神经元的数量,即ELM基函数
model_data.lambda=1e-4;%L2正则化参数
p_list=[0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99];%这里列出了所有要测试的稀疏化参数。
p_sz = length(p_list); %要测试的稀疏化参数的数量

ndim = size(p_train,2); %输入维度
s_sz = size(p_train,1);%训练集大小
Xd_train = p_train; Yd_train = t_train;

va_sz = size(p_test,1); % 验证集数量
Xd_valid = p_test; Yd_valid = t_test;

三、SW-ELM代理构建并执行全局敏感性分析

 elm_valid = exp(Xd_valid * W + bias) * beta;
rel(j) = rel(j) + norm(Yd_valid - elm_valid) / norm(Yd_valid); %选择哪一个稀疏化参数最好的相对误差估计
[W,bias,beta] = ELM(Xd_train,Yd_train,model_data);
elm_valid = exp(Xd_valid * W + bias) * beta; 
T_sim2 = mapminmax('reverse', elm_valid, ps_output);
error = norm(T_test' - T_sim2) / norm(T_test'); % SW-ELM误差
[sobolR,sobolT,sig2] = sobol_elm(W,beta,bias); % 最后这个函数计算灵敏度指数

四、绘图

在这里插入图片描述
在这里插入图片描述

五、代码获取

私信回复“84期”即可获取下载链接。

相关文章:

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用 前言 跟往期sobol区别: 1.sobol计算依赖于验证集样本,无需定义变量上下限。 2.SW-ELM自带激活函数,计算具有phi(x)e^x激…...

米游社区表情包整合网站源码

源码介绍 米游社表情包整合网站源码,来自Github大佬的项目,包含米游兔123枚,米游社 玩家12枚,崩坏 星穹铁道112枚,绝区零218枚,NAP32枚,崩坏RPG62枚,崩坏3-1282枚,原神 …...

easyexcel调用公共导出方法导出数据

easyexcel备忘 Slf4j public class ConditionDownloadUtil {//扫描在xboot 包下所有IService 接口的子类, 每次启动服务后, 重新扫描public final static Class[] classesExtendsIService ClassUtil.scanPackageBySuper("cn.exrick.xboot", IService.class).toArra…...

C语言插入排序算法及代码

一、原理 在待排序的数组里&#xff0c;从数组的第二个数字开始&#xff0c;通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。 二、代码部分 #include<stdio.h> #include<stdlib.h> int ma…...

2023年中国法拍房用户画像和数据分析

法拍房主要平台 法拍房主要平台有3家&#xff0c;分别是阿里、京东和北交互联平台。目前官方认定纳入网络司法拍卖的平台共有7家&#xff0c;其中阿里资产司法拍卖平台的挂拍量最大。 阿里法拍房 阿里法拍房数据显示2017年&#xff0c;全国法拍房9000套&#xff1b;2018年&a…...

Android 清除临时文件,清空缓存

python 代码&#xff1a; import os import shutil import tracebackdef delete_folder(path):if os.path.exists(path):print(f"删除文件夹: {path}")shutil.rmtree(path)print("删除完成")def delete_file(path):if os.path.exists(path):print(f"删…...

Guava限流神器:RateLimiter使用指南

1. 引言 可能有些小伙伴听到“限流”这个词就觉得头大&#xff0c;感觉像是一个既复杂又枯燥的话题。别急&#xff0c;小黑今天就要用轻松易懂的方式&#xff0c;带咱们一探RateLimiter的究竟。 想象一下&#xff0c;当你去超市排队结账时&#xff0c;如果收银台开得越多&…...

【六大排序详解】开篇 :插入排序 与 希尔排序

插入排序 与 希尔排序 六大排序之二 插入排序 与 希尔排序1 排序1.1排序的概念 2 插入排序2.1 插入排序原理2.2 排序步骤2.3 代码实现 3 希尔排序3.1 希尔排序原理3.2 排序步骤3.3 代码实现 4 时间复杂度分析 Thanks♪(&#xff65;ω&#xff65;)&#xff89;下一篇文章见&am…...

凸优化问题求解

这里写目录标题 1. 线性规划基本定理2.单纯形法2.1 转轴运算 3. 内点法3.1 线性规划的内点法 1. 线性规划基本定理 首先我们指出&#xff0c;线性规划均可等价地化成如下标准形式 { min ⁡ c T x , s . t A x b , x ⪰ 0 , \begin{align}\begin{cases}\min~c^Tx,\\\mathrm{s.…...

文件操作入门指南

目录 一、为什么使用文件 二、什么是文件 2.1 程序文件 2.2 数据文件 2.3 文件名 三、文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭 四、文件的顺序读写 ​编辑 &#x1f33b;深入理解 “流”&#xff1a; &#x1f342;文件的顺序读写函数介绍&#xff1a; …...

Axure之交互与情节与一些实例

目录 一.交互与情节简介 二.ERP登录页到主页的跳转 三.ERP的菜单跳转到各个页面的跳转 四.省市联动 五.手机下拉加载 今天就到这里了&#xff0c;希望帮到你哦&#xff01;&#xff01;&#xff01; 一.交互与情节简介 "交互"通常指的是人与人、人与计算机或物体…...

【数据库设计和SQL基础语法】--连接与联接--多表查询与子查询基础(二)

一、子查询基础 1.1 子查询概述 子查询是指在一个查询语句内部嵌套另一个查询语句的过程。子查询可以嵌套在 SELECT、FROM、WHERE 或 HAVING 子句中&#xff0c;用于从数据库中检索数据或执行其他操作。子查询通常返回一个结果集&#xff0c;该结果集可以被包含它的主查询使用…...

Android studio中导入opencv库

具体opencv库的导入流程参考链接&#xff1a;Android Studio开发之路 &#xff08;五&#xff09;导入OpenCV以及报错解决 一、出现的错误&#xff1a;NullPointerException: Cannot invoke “java.io.File.toPath()” because “this.mySdkLocation” is null 解决办法&#…...

Linux(1)_基础知识

第一部分 一、Linux系统概述 创始人&#xff1a;芬兰大学大一的学生写的Linux内核&#xff0c;李纳斯托瓦兹。 Linux时unix的类系统&#xff1b; 特点&#xff1a;多用户 多线程的操作系统&#xff1b; 开源操作系统&#xff1b; 开源项目&#xff1a;操作系统&#xff0c;应用…...

网络相关面试题

简述 TCP 连接的过程&#xff08;淘系&#xff09; 参考答案&#xff1a; TCP 协议通过三次握手建立可靠的点对点连接&#xff0c;具体过程是&#xff1a; 首先服务器进入监听状态&#xff0c;然后即可处理连接 第一次握手&#xff1a;建立连接时&#xff0c;客户端发送 syn 包…...

Vue2面试题:说一下对跨域的理解?

http请求分为两大类&#xff1a;普通http请求&#xff08;如百度请求&#xff09;和ajax请求&#xff08;跨域是出现在ajax请求&#xff09; 同源策略&#xff1a;在浏览器发起ajax请求时&#xff0c;当前的网址和被请求的网址协议、域名、端口号必须完全一致&#xff0c;目的是…...

Axure中如何使用交互样式交互事件交互动作情形

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《产品经理如何画泳道图&流程图》 ⛺️ 越努力 &#xff0c;越幸运 目录 一、Axure中交互样式 1、什么是交互样式&#xff1f; 2、交互样式的作用&#xff1f; 3、Axure中如何…...

1112. 迷宫(DFS之连通性模型)

1112. 迷宫 - AcWing题库 一天Extense在森林里探险的时候不小心走入了一个迷宫&#xff0c;迷宫可以看成是由 n∗n 的格点组成&#xff0c;每个格点只有2种状态&#xff0c;.和#&#xff0c;前者表示可以通行后者表示不能通行。 同时当Extense处在某个格点时&#xff0c;他只…...

飞天使-k8s知识点1-kubernetes架构简述

文章目录 名词功能要点 k8s核心要素CNCF 云原生框架简介k8s组建介绍 名词 CI 持续集成, 自动化构建和测试&#xff1a;通过使用自动化构建工具和自动化测试套件&#xff0c;持续集成可以帮助开发人员自动构建和测试他们的代码。这样可以快速检测到潜在的问题&#xff0c;并及早…...

linux中deadline调度原理与代码注释

简介 deadline调度是比rt调度更高优先级的调度&#xff0c;它没有依赖于优先级的概念&#xff0c;而是给了每个实时任务一定的调度时间&#xff0c;这样的好处是&#xff1a;使多个实时任务场景的时间分配更合理&#xff0c;不让一些实时任务因为优先级低而饿死。deadline调度…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...