当前位置: 首页 > news >正文

神经网络学习小记录76——Tensorflow2设置随机种子Seed来保证训练结果唯一

神经网络学习小记录76——Tensorflow2设置随机种子Seed来保证训练结果唯一

  • 学习前言
  • 为什么每次训练结果不同
  • 什么是随机种子
  • 训练中设置随机种子

学习前言

好多同学每次训练结果不同,最大的指标可能会差到3-4%这样,这是因为随机种子没有设定导致的,我们一起看看怎么设定吧。
在这里插入图片描述

为什么每次训练结果不同

模型训练中存在很多随机值,最常见的有:
1、随机权重,网络有些部分的权重没有预训练,它的值则是随机初始化的,每次随机初始化不同会导致结果不同。
2、随机数据增强,一般来讲网络训练会进行数据增强,特别是少量数据的情况下,数据增强一般会随机变化光照、对比度、扭曲等,也会导致结果不同。
3、随机数据读取,喂入训练数据的顺序也会影响结果。
……
应该还有别的随机值,这里不一一列出,这些随机都很容易影响网络的训练结果。

如果能够固定权重、固定数据增强情况、固定数据读取顺序,网络理论上每一次独立训练的结果都是一样的。

什么是随机种子

随机种子(Random Seed)是计算机专业术语。一般计算机的随机数都是伪随机数,以一个真随机数(种子)作为初始条件,然后用一定的算法不停迭代产生随机数。

按照这个理解,我们如果可以设置最初的 真随机数(种子),那么后面出现的随机数将会是固定序列。

以random库为例,我们使用如下的代码,前两次为随机生成,后两次为设置随机数生成器种子后生成。

import random# 生成随机整数
print("第一次随机生成")
print(random.randint(1,100))
print(random.randint(1,100))# 生成随机整数
print("第二次随机生成")
print(random.randint(1,100))
print(random.randint(1,100))# 设置随机数生成器种子
random.seed(11)# 生成随机整数
print("第一次设定种子后随机生成")
print(random.randint(1,100))
print(random.randint(1,100))# 重置随机数生成器种子
random.seed(11)# 生成随机整数
print("第二次设定种子后随机生成")
print(random.randint(1,100))
print(random.randint(1,100))

结果如下,前两次随机生成的序列不同,后两次设定种子后随机生成的序列相同:

第一次随机生成
66
37
第二次随机生成
93
56
第一次设定种子后随机生成
58
72
第二次设定种子后随机生成
58
72

训练中设置随机种子

一般训练会用到多个库包含有关random的内容。

在tensorflow2构建的网络中,一般都是使用下面三个库来获得随机数,我们需要对三个库都设置随机种子:
1、tensorflow2库;
2、numpy库;
3、random库。

在这里写了一个函数,:

#---------------------------------------------------#
#   设置种子
#---------------------------------------------------#
def seed_everything(seed=11):random.seed(seed)np.random.seed(seed)tf.random.set_seed(seed)

只需要在所有初始化前,调用该seed初始化函数即可。

相关文章:

神经网络学习小记录76——Tensorflow2设置随机种子Seed来保证训练结果唯一

神经网络学习小记录76——Tensorflow2设置随机种子Seed来保证训练结果唯一 学习前言为什么每次训练结果不同什么是随机种子训练中设置随机种子 学习前言 好多同学每次训练结果不同,最大的指标可能会差到3-4%这样,这是因为随机种子没有设定导致的&#x…...

ai学习笔记-入门

目录 一、人工智能是什么?可以做什么? 人工智能(Artificial Intelligence): 人工智能的技术发展路线: 产业发展驱动因素:数据、算力、算法 二、人工智能这个工具的使用原理入门 神经网络⭕数学基础 1.神经网络的生物表示 …...

workflow系列教程(5-1)HTTP Server

往期教程 如果觉得写的可以,请给一个点赞关注支持一下 观看之前请先看,往期的博客教程,否则这篇博客没办法看懂 workFlow c异步网络库编译教程与简介 C异步网络库workflow入门教程(1)HTTP任务 C异步网络库workflow系列教程(2)redis任务 workflow系列教程(3)Series串联任务流…...

php-使用wangeditor实现富文本(完成图片上传)-npm

官网参考连接:快速开始 | wangEditor 样式: 一、新建一个临时文件夹test1和一个文件夹wangeditor 临时文件夹test1:临时存放通过npm下载的文件文件夹wangeditor:用于存放在临时文件夹test1拷贝的css和js 二、安装 editor 在确保有…...

mysql查看数据库中所有的表的建表语句

mysql查看数据库中所有的表: SHOW TABLES; 这条命令将返回数据库中所有表的列表。 如果要查看单个表的建表语句,可以使用以下命令: SHOW CREATE TABLE table_name; 其中,"table_name"为你要查看的表的名称。 如果…...

【Axure RP9】实现登入效验及实现左侧菜单栏跳转各页面

目录 一 效验简介 1.1 校验好处 1.2 应用场景 二 登入校验 2.1 效果 2.2 实现流程 三 左边菜单栏左侧菜单栏跳转各页面 3.1 效果 3.2 实现图 一 效验简介 1.1 校验好处 提高安全性: 在传统的用户名和密码登录的基础上,引入了另一种或多种验证…...

76. 最小覆盖子串。优化官方题解!

leetcode原题如下: 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量…...

在国产GPU寒武纪MLU上快速上手Pytorch使用指南

本文旨在帮助Pytorch使用者快速上手使用寒武纪MLU。以代码块为主,文字尽可能简洁,许多部分对标NVIDIA CUDA。不正确的地方请留言更正。本文不定期更新。 文章目录 前言Cambricon PyTorch的Python包torch_mlu导入将模型加载到MLU上model.to(mlu)定义损失函…...

重生奇迹MU觉醒战士攻略

剑士连招技巧:生命之光:PK前起手式,增加血上限。 雷霆裂闪:眩晕住对手,剑士PK战士第一技能,雷霆裂闪是否使用好关系到胜负。 霹雳回旋斩:雷霆裂闪后可以选择用霹雳回旋斩跑出一定范围(因为对手…...

美颜技术详解:深入了解视频美颜SDK的工作机制

本文将深入探讨视频美颜SDK的工作机制,揭示其背后的科技奥秘和算法原理。 1.引言 视频美颜SDK作为一种集成到应用程序中的技术工具,通过先进的算法和图像处理技术,为用户提供令人印象深刻的实时美颜效果。 2.视频美颜SDK的基本工作原理 首…...

3D模型格式转换工具如何实现高性能数据转换?请看CAE系统开发实例!

​ 客户背景 DP Technology是全球知名的CAM的供应商,在全球8个国家设有18个办事处。DP Technology提供的CAMESPRIT系统是一个用于数控编程,优化和仿真全方面的CAM系统。CAMESPRIT的客户来自多个行业,因此支持多种CAD工具和文件格式显得格外重…...

多级缓存:亿级流量的缓存方案

文章目录 一.多级缓存的引入二.JVM进程缓存三.Lua语法入门四.多级缓存1.OpenResty2.查询Tomcat3.Redis缓存预热4.查询Redis缓存5.Nginx本地缓存6.缓存同步 一.多级缓存的引入 传统缓存的问题 传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未…...

C语言——高精度乘法

一、引子 高精度乘法相较于高精度加法和减法有更多的不同,加法和减法是一位对应一位进行操作的,而乘法是一个数的每一位对另一个数的每一位进行操作,需要的计算步骤更多。 二、核心算法 void Calculate(int num1[], int num2[], int numres…...

为什么C语言没有被C++所取代呢?

今日话题,为什么C语言没有被C所取代呢?虽然C是一个功能更强大的语言,但C语言在嵌入式领域仍然广泛使用,因为它更轻量级、更具可移植性,并且更适合在资源受限的环境中工作。这就是为什么C语言没有被C所取代的原因。如果…...

基于Spring的枚举类+策略模式设计(以实现多种第三方支付功能为例)

摘要 最近阅读《贯彻设计模式》这本书,里面使用一个更真实的项目来介绍设计模式的使用,相较于其它那些只会以披萨、厨师为例的设计模式书籍是有些进步。但这书有时候为了使用设计模式而强行朝着对应的 UML 图来设计类结构,并且对设计理念缺少…...

基于Linphone android sdk开发Android软话机

1.Linphone简介 1.1 简介 LinPhone是一个遵循GPL协议的开源网络电话或者IP语音电话(VOIP)系统,其主要如下。使用linphone,开发者可以在互联网上随意的通信,包括语音、视频、即时文本消息。linphone使用SIP协议&#…...

[论文分享]TimeDRL:多元时间序列的解纠缠表示学习

论文题目:TimeDRL: Disentangled Representation Learning for Multivariate Time-Series 论文地址:https://arxiv.org/abs/2312.04142 代码地址:暂无 关键要点:多元时间序列,自监督表征学习,分类和预测 摘…...

分享一个好看的vs主题

最近发现了一个很好看的vs主题(个人认为挺好看的),想要分享给大家。 主题的名字叫NightOwl,和vscode的主题颜色挺像的。操作方法也十分简单,首先我们先在最上面哪一行找到扩展。 然后点击管理扩展,再搜索栏…...

什么是云呼叫中心?

云呼叫中心作为一种高效的企业呼叫管理方案,越来越受到企业的青睐,常被用于管理客服和销售业务。那么,云呼叫中心到底是什么? 什么是云呼叫中心? 云呼叫中心是一种基于互联网的呼叫管理系统,与传统的呼叫…...

还在用nvm?来试试更快的node版本管理工具——fnm

前言 📫 大家好,我是南木元元,热衷分享有趣实用的文章,希望大家多多支持,一起进步! 🍅 个人主页:南木元元 目录 什么是node版本管理 常见的node版本管理工具 fnm是什么 安装fnm …...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

【生成模型】视频生成论文调研

工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...