回归预测 | MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图)
回归预测 | MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图)
目录
- 回归预测 | MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览


基本介绍
1.回归预测 | MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图)(多指标,多图)。出图包括迭代曲线图、预测效果图等等。
2.matlab 版本要求2020b及以上版本 程序已调试好可以直接运行(数据直接在Excel中替换)优化参数为DHKELM的各种核参数、
3.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
4.附赠示例数据,直接运行main文件一键出图[灯泡]评价指标包括:R2、MAE、MSE、MAPE、RMSE等,图很多。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图)
回归预测 | MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图) 目录 回归预测 | MATLAB实现GWO-DHKELM基于灰狼算法优化深度混合核极限学习机的数据回归预测 (多指标,多图&#…...
听GPT 讲Rust源代码--src/tools(15)
File: rust/src/tools/rust-analyzer/crates/mbe/src/token_map.rs 在Rust源代码中,rust/src/tools/rust-analyzer/crates/mbe/src/token_map.rs文件的作用是实现了一个能够将输入的文本映射为标记的结构。具体来说,它定义和实现了几个结构体(…...
python可以做小程序研发嘛,python能做微信小程序吗
大家好,给大家分享一下python可以做微信小程序开发吗,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! 大家好,给大家分享一下用python编写一个小程序,很多人还不知道这一点。下面详细解释一下用python代码…...
创建型模式 | 单例模式
一、单例模式 单例模式(Singleton Pattern),使用最广泛的设计模式之一。其意图是保证一个类仅有一个实例被构造,并提供一个访问它的全局访问接口,该实例被程序的所有模块共享。 1、饿汉式 1.1、基础版本 在程序启动后立刻构造单例࿰…...
【无标题】欢迎使用Markdown编辑器
这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…...
Postgresql中PL/pgSQL的游标、自定义函数、存储过程的使用
场景 Postgresql中PL/pgSQL代码块的语法与使用-声明与赋值、IF语句、CASE语句、循环语句: Postgresql中PL/pgSQL代码块的语法与使用-声明与赋值、IF语句、CASE语句、循环语句-CSDN博客 上面讲了基本语法,下面记录游标、自定义函数、存储过程的使用。 …...
【IDEA】Intellij IDEA相关配置
IDEA 全称 IntelliJ IDEA,是java编程语言的集成开发环境。IntelliJ在业界被公认为最好的Java开发工具,尤其在智能代码助手、代码自动提示、重构、JavaEE支持、各类版本工具(git、svn等)、JUnit、CVS整合、代码分析、 创新的GUI设计等方面的功能可以说是超…...
GD32移植STM32工程(因为懒,所以移植)
文章目录 一、前言二、差异性三、软件移植部分1.前期准备1.1 安装GD32固件库1.2 选择所用芯片 2.修改程序2.1 启动时间(内部时钟可不改)2.2 主频2.2.1 系统时钟配置2.2.2 108MHz宏定义第一处第二处第三处第四处第五处 2.2.3 串口2.2.4 FLASH 四、总结 一…...
mt5和mt4交易软件有什么区别?
MetaTrader 4(MT4)和MetaTrader 5(MT5)是两种广泛使用的外汇和金融市场交易平台,由MetaQuotes公司开发。尽管它们都是外汇交易的常见选择,但在功能和特性上存在一些区别。以下是MT4和MT5之间的主要区别&…...
零刻EQ12 N100 双2.5G网口 All In One新手教程
零刻EQ12 N100 双2.5G网口 All In One新手教程 前言1.硬件配置2.准备工作2.1. ESXI8.0U2镜像2.2. Rufus磁盘工具下载2.3. ikuai镜像下载2.4. StarWindConverter虚拟磁盘格式转换工具下载2.5. OpenWrt镜像下载2.6. 黑群晖RR引导镜像下载(DSM7.2)2.7. 需要准备的硬件2.8. 格式化需…...
竞赛保研 基于Django与深度学习的股票预测系统
文章目录 0 前言1 课题背景2 实现效果3 Django框架4 数据整理5 模型准备和训练6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于Django与深度学习的股票预测系统 ** 该项目较为新颖,适合作为竞赛课题方向ÿ…...
听GPT 讲Rust源代码--src/tools(16)
File: rust/src/tools/rust-analyzer/crates/ide-completion/src/completions/use_.rs rust-analyzer是一个基于Rust语言的IntelliSense引擎,用于提供IDE自动补全、代码导航和其他代码编辑功能。在rust-analyzer的源代码中,rust/src/tools/rust-analyzer…...
Leetcoed 双指针
三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。 请你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组…...
关于“Python”的核心知识点整理大全31
目录 12.4.2 在屏幕上绘制飞船 alien_invasion.py 编辑12.5 重构:模块 game_functions 12.5.1 函数 check_events() game_functions.py alien_invasion.py 12.5.2 函数 update_screen() game_functions.py alien_invasion.py 12.6 驾驶飞船 12.6.1 响应…...
第1章 SpringBoot开发入门
学习目标 了解SpringBoot的优点 掌握SpringBoot项目的构建 掌握SpringBoot的单元测试和热部署 熟悉SpringBoot的自动化配置原理 熟悉SpringBoot的执行流程 随着互联网的兴起,Spring势如破竹地占据了Java领域轻量级开发的王者之位。随着Java语言的发展以及市场…...
利用prometheus+grafana进行Linux主机监控
文章目录 一.架构说明与资源准备二.部署prometheus1.上传软件包2.解压软件包并移动到指定位置3.修改配置文件4.编写启动脚本5.启动prometheus服务 三.部署node-exporter1.上传和解压软件包2.设置systemctl启动3.启动服务 四.部署grafana1.安装和启动grafana2.设置prometheus数据…...
单词反转(字符串)
题目名字 单词反转 题目链接 题意 输入倒序的字符串,要求输出正序的字符串 思路 用while输入,这样当出现输入是空格时自动划分上一个为一个单词然后再次反输出 while循环的条件是当不再输入的时候,因为是字符串,不用getline输入…...
【Java 集合】LinkedBlockingDeque
在开始介绍 LinkedBlockingDeque 之前, 我们先看一下 LinkedBlockingDeque 的类图: 从其中可以看出他直接实现了 BlockingDeque 接口, 而 BlockingDeque 又实现了 BlockingQueue 的接口, 所以它本身具备了队列的特性。 而实现 BlockingDeque 使其在 BlockingQueue 的基础上多了…...
【hacker送书第3期】OpenCV轻松入门:面向Python(第2版)
第3期图书推荐 内容简介作者简介图书目录专家推荐参与方式 内容简介 本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用…...
手把手教你isPalindrome 方法在密码验证中的应用
在信息安全领域中,密码验证是一个极为重要的组成部分。一个强密码应具备足够的复杂性,以免遭到破解。而回文密码是一种具备特殊性质的密码,其正序和倒序相同,因此具有极高的安全性,并能发挥重要作用。在实际密码策略中…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
边缘计算网关提升水产养殖尾水处理的远程运维效率
一、项目背景 随着水产养殖行业的快速发展,养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下,而且难以实现精准监控和管理。为了提升尾水处理的效果和效率,同时降低人力成本,某大型水产养殖企业决定…...
npm install 相关命令
npm install 相关命令 基本安装命令 # 安装 package.json 中列出的所有依赖 npm install npm i # 简写形式# 安装特定包 npm install <package-name># 安装特定版本 npm install <package-name><version>依赖类型选项 # 安装为生产依赖(默认&…...
