当前位置: 首页 > news >正文

神经网络:深度学习优化方法

1.有哪些方法能提升CNN模型的泛化能力

  1. 采集更多数据:数据决定算法的上限。

  2. 优化数据分布:数据类别均衡。

  3. 选用合适的目标函数。

  4. 设计合适的网络结构。

  5. 数据增强。

  6. 权值正则化。

  7. 使用合适的优化器等。

2.BN层面试高频问题大汇总

BN层解决了什么问题?

统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的”。如果不一致,那么就出现了新的机器学习问题,如transfer learning/domain adaptation等。而covariate shift就是分布不一致假设之下的一个分支问题,它是指源空间和目标空间的条件概率是一致的,但是其边缘概率不同。对于神经网络的各层输出,由于它们经过了层内卷积操作,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,但是它们所能代表的label仍然是不变的,这便符合了covariate shift的定义。

因为神经网络在做非线性变换前的激活输入值随着网络深度加深,其分布逐渐发生偏移或者变动(即上述的covariate shift)。之所以训练收敛慢,一般是整体分布逐渐往非线性函数的取值区间的上下限两端靠近(比如sigmoid),所以这导致反向传播时低层神经网络的梯度消失,这是训练深层神经网络收敛越来越慢的本质原因。而BN就是通过一定的正则化手段,把每层神经网络任意神经元这个输入值的分布强行拉回到均值为0方差为1的标准正态分布,避免因为激活函数导致的梯度弥散问题。所以与其说BN的作用是缓解covariate shift,也可以说BN可缓解梯度弥散问题。

BN的公式

其中scale和shift是两个可学的参数,因为减去均值除方差未必是最好的分布。比如数据本身就很不对称,或者激活函数未必是对方差为1的数据有最好的效果。所以要加入缩放及平移变量来完善数据分布以达到比较好的效果。

BN层训练和测试的不同

在训练阶段,BN层是对每个batch的训练数据进行标准化,即用每一批数据的均值和方差。(每一批数据的方差和标准差不同)

而在测试阶段,我们一般只输入一个测试样本,并没有batch的概念。因此这个时候用的均值和方差是整个数据集训练后的均值和方差,可以通过滑动平均法求得:

上面式子简单理解就是:对于均值来说直接计算所有batch u u u 值的平均值;然后对于标准偏差采用每个batch σ B σ_B σB 的无偏估计。

在测试时,BN使用的公式是:

BN训练时为什么不用整个训练集的均值和方差?

因为用整个训练集的均值和方差容易过拟合,对于BN,其实就是对每一batch数据标准化到一个相同的分布,而不同batch数据的均值和方差会有一定的差别,而不是固定的值,这个差别能够增加模型的鲁棒性,也会在一定程度上减少过拟合。

BN层用在哪里?

在CNN中,BN层应该用在非线性激活函数前面。由于神经网络隐藏层的输入是上一层非线性激活函数的输出,在训练初期其分布还在剧烈改变,此时约束其一阶矩和二阶矩无法很好地缓解 Covariate Shift;而BN的分布更接近正态分布,限制其一阶矩和二阶矩能使输入到激活函数的值分布更加稳定。

BN层的参数量

我们知道 γ γ γ β β β 是需要学习的参数,而BN的本质就是利用优化学习改变方差和均值的大小。在CNN中,因为网络的特征是对应到一整张特征图上的,所以做BN的时候也是以特征图为单位而不是按照各个维度。比如在某一层,特征图数量为 c c c ,那么做BN的参数量为 c ∗ 2 c * 2 c2

BN的优缺点

优点:

  1. 可以选择较大的初始学习率。因为这个算法收敛很快。

  2. 可以不用dropout,L2正则化。

  3. 不需要使用局部响应归一化。

  4. 可以把数据集彻底打乱。

  5. 模型更加健壮。

缺点:

  1. Batch Normalization非常依赖Batch的大小,当Batch值很小时,计算的均值和方差不稳定。

  2. 所以BN不适用于以下几个场景:小Batch,RNN等。

3.Instance Normalization的作用

Instance Normalization(IN)和Batch Normalization(BN)一样,也是Normalization的一种方法,只是IN是作用于单张图片,而BN作用于一个Batch

BN对Batch中的每一张图片的同一个通道一起进行Normalization操作,而IN是指单张图片的单个通道单独进行Normalization操作。如下图所示,其中C代表通道数,N代表图片数量(Batch)。

IN适用于生成模型中,比如图片风格迁移。因为图片生成的结果主要依赖于某个图像实例,所以对整个Batch进行Normalization操作并不适合图像风格化的任务,在风格迁移中使用IN不仅可以加速模型收敛,并且可以保持每个图像实例之间的独立性。

下面是IN的公式:

其中t代表图片的index,i代表的是feature map的index。

4.有哪些提高GAN训练稳定性的Tricks

1.输入Normalize

  1. 将输入图片Normalize到 [ − 1 , 1 ] [-1,1] [11] 之间。
  2. 生成器最后一层的输出使用Tanh激活函数。

Normalize非常重要,没有处理过的图片是没办法收敛的。图片Normalize一种简单的方法是(images-127.5)/127.5,然后送到判别器去训练。同理生成的图片也要经过判别器,即生成器的输出也是-1到1之间,所以使用Tanh激活函数更加合适。

2.替换原始的GAN损失函数和标签反转

  1. 原始GAN损失函数会出现训练早期梯度消失和Mode collapse(模型崩溃)问题。可以使用Earth Mover distance(推土机距离)来优化。

  2. 实际工程中用反转标签来训练生成器更加方便,即把生成的图片当成real的标签来训练,把真实的图片当成fake来训练。

3.使用具有球形结构的随机噪声 $Z$ 作为输入

  1. 不要使用均匀分布进行采样

  1. 使用高斯分布进行采样

4.使用BatchNorm

  1. 一个mini-batch中必须只有real数据或者fake数据,不要把他们混在一起训练。
  2. 如果能用BatchNorm就用BatchNorm,如果不能用则用instance normalization。

5.避免使用ReLU,MaxPool等操作引入稀疏梯度

  1. GAN的稳定性会因为引入稀疏梯度受到很大影响。
  2. 最好使用类LeakyReLU的激活函数。(D和G中都使用)
  3. 对于下采样,最好使用:Average Pooling或者卷积+stride。
  4. 对于上采样,最好使用:PixelShuffle或者转置卷积+stride。

最好去掉整个Pooling逻辑,因为使用Pooling会损失信息,这对于GAN训练没有益处。

6.使用Soft和Noisy的标签

  1. Soft Label,即使用 [ 0.7 − 1.2 ] [0.7-1.2] [0.71.2] [ 0 − 0.3 ] [0-0.3] [00.3] 两个区间的随机值来代替正样本和负样本的Hard Label。
  2. 可以在训练时对标签加一些噪声,比如随机翻转部分样本的标签。

7.使用Adam优化器

  1. Adam优化器对于GAN来说非常有用。
  2. 在生成器中使用Adam,在判别器中使用SGD。

8.追踪训练失败的信号

  1. 判别器的损失=0说明模型训练失败。
  2. 如果生成器的损失稳步下降,说明判别器没有起作用。

9.在输入端适当添加噪声

  1. 在判别器的输入中加入一些人工噪声。
  2. 在生成器的每层中都加入高斯噪声。

10.生成器和判别器差异化训练

  1. 多训练判别器,尤其是加了噪声的时候。

11.Two Timescale Update Rule (TTUR)

对判别器和生成器使用不同的学习速度。使用较低的学习率更新生成器,判别器使用较高的学习率进行更新。

12.Gradient Penalty (梯度惩罚)

使用梯度惩罚机制可以极大增强 GAN 的稳定性,尽可能减少mode collapse问题的产生。

13.Spectral Normalization(谱归一化)

Spectral normalization可以用在判别器的weight normalization技术,可以确保判别器是K-Lipschitz连续的。

14.使用多个GAN结构

可以使用多个GAN/多生成器/多判别器结构来让GAN训练更稳定,提升整体效果,解决更难的问题。

5.深度学习炼丹可以调节的一些超参数

  1. 预处理(数据尺寸,数据Normalization)
  2. Batch-Size
  3. 学习率
  4. 优化器
  5. 损失函数
  6. 激活函数
  7. Epoch
  8. 权重初始化
  9. NAS网络架构搜索

6.Spectral Normalization的相关知识

Spectral Normalization是一种wegiht Normalization技术,和weight-clipping以及gradient penalty一样,也是让模型满足1-Lipschitz条件的方式之一。

Lipschitz(利普希茨)条件限制了函数变化的剧烈程度,即函数的梯度,来确保统计的有界性。因此函数更加平滑,在神经网络的优化过程中,参数变化也会更稳定,不容易出现梯度爆炸

Lipschitz条件的约束如下所示:

截屏2023-11-13 20 35 07

其中 K K K 代表一个常数,即利普希茨常数。若 K = 1 K=1 K=1 ,则是1-Lipschitz。

在GAN领域,Spectral Normalization有很多应用。在WGAN中,只有满足1-Lipschitz约束时,W距离才能转换成较好求解的对偶问题,使得WGAN更加从容的训练。

如果想让矩阵A映射: R n → R m R^{n}\to R^{m} RnRm 满足K-Lipschitz连续,K的最小值为 λ 1 \sqrt{\lambda_{1}} λ1 ( λ 1 \lambda_{1} λ1 A T A A_TA ATA 的最大特征值),那么要想让矩阵A满足1-Lipschitz连续,只需要在A的所有元素上同时除以 λ 1 \sqrt{\lambda_{1}} λ1 (Spectral norm)。

Spectral Normalization实际上在做的事,是将每层的参数矩阵除以自身的最大奇异值,本质上是一个逐层SVD的过程,但是真的去做SVD就太耗时了,所以采用幂迭代的方法求解。过程如下图所示:

幂迭代法流程

得到谱范数 σ l ( W ) \sigma_l(W) σl(W) 后,每个参数矩阵上的参数皆除以它,以达到Normalization的目的。

相关文章:

神经网络:深度学习优化方法

1.有哪些方法能提升CNN模型的泛化能力 采集更多数据:数据决定算法的上限。 优化数据分布:数据类别均衡。 选用合适的目标函数。 设计合适的网络结构。 数据增强。 权值正则化。 使用合适的优化器等。 2.BN层面试高频问题大汇总 BN层解决了什么问…...

Unity中Shader旋转矩阵(二维旋转矩阵)

文章目录 前言一、旋转矩阵的原理1、我们以原点为中心,旋转坐标轴θ度2、求 P~2x~:3、求P~2y~:4、最后得到 P~2~点 的点阵5、该点阵可以拆分为以下两个矩阵相乘的结果 二、在Shader中,使用该旋转矩阵实现围绕 z 轴旋转1、在属性面板定义 floa…...

前端面试题(计算机网络):options请求方法及使用场景

OPTIONS请求方法及使用场景 回答思路:什么是options请求-->options请求方法-->options使用场景什么是options请求?(浅入)扩展:常见的HTTP请求有什么?扩展:常见的HTTP请求的作用&#xff1…...

使用docker-compose管理docker服务

使用docker-compose管理docker服务 1,创建docker-compose.yml version: 3 services:javaapp:build: context: ./javaappdockerfile: Dockerfileports:- "9202:9202"- "19202:19202"goapp:build: context: ./goappdockerfile: Dockerfileports…...

Python_Tkinter和OpenCV模拟行星凌日传输光度测定

传输光度测定 在天文学中,当相对较小的天体直接经过较大天体的圆盘和观察者之间时,就会发生凌日。 当小物体移过较大物体的表面时,较大物体会稍微变暗。 最著名的凌日是水星和金星对太阳的凌日。 借助当今的技术,天文学家可以在…...

【安全】使用auparse解析auditd审计日志

使用auparse解析auditd审计日志 1 审计日志特点 查看auditd.log的日志,审计日志的格式如下: typeSYSCALL msgaudit(1703148319.954:11680975): archc000003e syscall2 successyes exit5 a01102430 a10 a21b6 a324 items1 ppid7752 pid7761 auid0 uid0…...

flink watermark 实例分析

WATERMARK 定义了表的事件时间属性,其形式为: WATERMARK FOR rowtime_column_name AS watermark_strategy_expression rowtime_column_name 把一个现有的列定义为一个为表标记事件时间的属性。该列的类型必须为 TIMESTAMP(3)/TIMESTAMP_LTZ(3),且是 sche…...

系列十二(面试)、Java中的GC回收类型有哪些?

一、Java中的GC回收类型 1.1、概述 Java中的GC回收类型主要包含以下几种,即:UseSerialGC、UseParallelGC、UseConcMarkSweepGC、UseParNewGC、UseParallelOldGC、UseG1GC。 1.2、源码...

华为数通方向HCIP-DataCom H12-831题库(多选题:201-220)

第201题 在多集群RR组网中,每个集群中部署了一台RR设备及其客户机,各集群的RR与为非客户机关系,并建立IBGP全连接。以下关于BGP路由反射器发布路由规则的描述,正确的有哪些? A、若某RR从EBGP对等体学到的路由,此RR会传递给其他集群的RR B、若某RR从非客户机IBGP对等体学…...

NLP论文阅读记录 - | 使用GPT对大型文档集合进行抽象总结

文章目录 前言0、论文摘要一、Introduction二.相关工作2.1Summarization2.2 神经网络抽象概括2.2.1训练和测试数据集。2.2.2 评估。 2.3 最先进的抽象摘要器 三.本文方法3.1 查询支持3.2 文档聚类3.3主题句提取3.4 语义分块3.5 GPT 零样本总结 四 实验效果4.1数据集4.2 对比模型…...

华为全屋wifi6蜂鸟套装标准

华为政企42 华为政企 目录 上一篇华为安防监控摄像头下一篇华为企业级无线路由器...

系列二十八、如何在Oracle官网下载JDK的api文档

一、官网下载JDK的api文档 1.1、官网地址 https://www.oracle.com/java/technologies/javase-jdk21-doc-downloads.html 1.2、我分享的api.chm 链接:https://pan.baidu.com/s/1Bf55Fz-eMTErmQDtZZcewQ?pwdyyds 提取码:yyds 1.3、参考 https://ww…...

STM32-ADC模数转换器

目录 一、ADC简介 二、逐次逼近型ADC内部结构 三、STM32内部ADC转换结构 四、ADC基本结构 五、输入通道 六、转换模式 6.1单次转换,非扫描模式 6.2连续转换,非扫描模式 6.3单次转换,扫描模式 6.4连续转换,扫描模式 七、…...

谷歌手机安装证书到根目录

1、前提你已经root,安装好面具 2,下载movecert模块,自动帮你把证书从用户证书移动成系统证书 视频教程,手机为谷歌手机 https://www.bilibili.com/video/BV1pG4y1A7Cj?p11&vd_source9c0a32b00d6d59fecae05b4133f22f06 软件下…...

代码随想录 322. 零钱兑换

题目 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。 你可以认为每种硬币的数量是无限的。…...

【图的应用二:最短路径】- 用 C 语言实现迪杰斯特拉算法和弗洛伊德算法

目录 一、最短路径 二、迪杰斯特拉算法 三、弗洛伊德算法 一、最短路径 假若要在计算机上建立一个交通咨询系统,则可以采用图的结构来表示实际的交通网络。如下图所示,图中顶点表示城市,边表示城市间的交通联系。 这个咨询系统可以回答旅…...

Qt之判断一个点是否在多边形内部(射线法)

算法思想: 以被测点Q为端点,向任意方向作射线(一般水平向右作射线),统计该射线与多边形的交点数。如果为奇数,Q在多边形内;如果为偶数,Q在多边形外。计数的时候会有一些特殊情况。这种方法适用于任意多边形,不需要考虑精度误差和多边形点给出的顺序,时间复杂度为O(n)…...

压力测试过程中内存溢出(堆溢出、栈溢出、持久代溢出)情况如何解决

在压力测试过程中,可能会遇到内存溢出的问题,其中常见的包括堆内存溢出、栈内存溢出和持久代溢出。解决这类问题需要首先理解各种内存溢出的原因和特点。 堆内存溢出:这种情况通常发生在稳定性压测一段时间后,系统报错&#xff0…...

【工业智能】音频信号相关场景

【工业智能】音频信号相关场景 DcaseDcase introduction:dcase2024有10个主题的任务: ASD硬件设备产品商 方法制造业应用场景 zenodo音频事件检测 与计算机视觉CV相对应,计算机听觉computer audition,简称CA。 Dcase 这里推荐一个…...

(PC+WAP)装修设计公司网站模板 家装公司网站源码下载

(PCWAP)装修设计公司网站模板 家装公司网站源码下载 PbootCMS内核开发的网站模板,该模板适用于装修设计、家装公司类等企业,当然其他行业也可以做,只需要把文字图片换成其他行业的即可; PCWAP,同一个后台&#xff0c…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...