随笔:集成学习:关于随机森林,梯度提升机的东拉西扯
1.集成学习
这里不会描述算法过程。
当我们有许多学习器对同一个任务做出判断,他们预测的概率可能各不相同,比如预测一个男生(小徐)会不会喜欢另一个女生(小雪),支持向量机算出来小徐爱上小雪的概率是0.8,朴素贝叶斯认为是0.3,决策树觉得是0.7。假设大于0.5算认可。
我们不知道该听谁的,就按照最简单的两个方法来决定:
(1).少数服从多数:有两个分类器的预测概率都大于0.5,我们就认为是真的,小徐会喜欢小雪。这种硬核决策的方法被称为硬投票。
(2).概率平均计算:那么喜欢的概率就是(0.8+0.3+0.7)/ 3 = 0.6,说明也是喜欢,这种基于最高的概率就是软决策。不过这个例子有点简单,软决策是不同决策的概率,然后各自平均,概率最高的类就是最后选择的结果。
这种把各种分类器组合起来的方法就是集成学习。不过集成方法有两种,第一种是并形计算,第二种串行计算。
这是什么意思?
(1).并行计算,就是说这一组分类器各训练各的,互不干扰。训练完之后,再组合到到一起。比如随机森林。显然,各个分类器之间几乎相互不联系,所以他们的关系很弱,也就是弱依赖关系。代表算法是随机森林。
(2).串行计算,就是说这一组分类器,就跟人体蜈蚣一样,前面依赖后面,呕了,学习器之间有很强的依赖关系,代表算法是AdaBoost
2.bagging和pasting
当我们有一组分类器的时候,要对他们进行训练,用的是同一个训练集,每个分类器抽取训练集中的一部分训练。对于其中一个分类器,对于样本的抽取有两种
(1).抽到的样本放回去,这种方法叫做bagging
(2).抽到的样本不放回去,这种方法叫做pasting
也就是说,如果分类器可以用同样的样本训练,那么他就是bagging,如果不允许就是pastting。
理论上上来讲,每个单独的分类器,它的偏差要高于集成的。bagging训练出来的结果一般要比pasting更好,因为允许抽到同样的样本,所以多样性更好,降低了偏差。
随机森林就是弱关系的一组决策树集成起来的。西瓜书说随机森林是用bagging训练的。这个我觉得看情况吧,也许有些库使用了pasting也说不定。
3.boosting
前面已经说了bagging了,所以boosting就不说了。
就是前面的分类器对样本预测,后面对错误的样本多关注,也就是后面的分类器依赖前面的预测器的表现。
4.stacking
这种方法应该用得不多,因为我看scikit-learn没有实现这个算法。
它的奇特之处在于,把使用不同的分类器组合,堆叠起来,前面一层分类器做预测,输出可能的预测,然后把预测的结果给后面一层分类器做输入,有点像是神经网络,对不起,我不该这么说,这样误导了其他人。
其实它是这样的。
把训练集分类两个部分。第一个部分用来训练第一层的分类器,训练完毕之后,就用第二个部分训练集输入训练好的第一层,第一层会输出一组结果,这个结果就是第二层训练器的输入了,然后用第二部分的标签相匹配,用来训练第二层的分类器。
就是这样。
相关文章:
随笔:集成学习:关于随机森林,梯度提升机的东拉西扯
1.集成学习 这里不会描述算法过程。 当我们有许多学习器对同一个任务做出判断,他们预测的概率可能各不相同,比如预测一个男生(小徐)会不会喜欢另一个女生(小雪),支持向量机算出来小徐爱上小雪的概率是0.8,朴素贝叶斯认为是0.3&a…...
 
多款实用个人年终总结模板,助力你的年度汇报!
临近年末,相信很多职场人这阵子都在忙着撰写个人年终总结,这份材料是对自己过去一年的工作进行的回顾和总结。撰写年终总结,其实也是一个非常重要的自我反思过程,可以帮助我们明确自己的目标,找出需要改进的地方&#…...
 
【C语言】动态内存管理基础知识——动态通讯录,如何实现通讯录容量的动态化
引言 动态内存管理的函数有:malloc,calloc,ralloc,free,本文讲解动态内存函数和使用,如何进行动态内存管理,实现通讯录联系人容量的动态化,对常见动态内存错误进行总结。 ✨ 猪巴戒:个人主页✨ 所属专栏:《C语言进阶》…...
Centos9(Stream)配置Let‘s Encrypt (免费https证书)
1. 安装snap,用来安装certbot: sudo dnf install epel-release sudo dnf upgrade sudo yum install snapd sudo systemctl enable --now snapd.socket sudo ln -s /var/lib/snapd/snap /snap snap install core snap refresh core 2. 安装 certbot命令…...
Spring之事务(2)
学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…...
 
嵌入式科普(5)ARM GNU Toolchain相关概念和逻辑
一、目的/概述 二、资料来源 三、逻辑和包含关系 四、Arm GNU Toolchain最常用的命令 嵌入式科普(5)ARM GNU Toolchain相关概念和逻辑 一、目的/概述 对比高集成度的IDE(MDK、IAR等),Linux开发需要自己写Makefile等多种脚本。eclipse、Visual Studio等需要了解预处…...
 
Elasticsearch:什么是文本分类?
文本分类定义 - text classification 文本分类是一种机器学习,它将文本文档或句子分类为预定义的类或类别。 它分析文本的内容和含义,然后使用文本标签为其分配最合适的标签。 文本分类的实际应用包括情绪分析(确定评论中的正面或负面情绪&…...
 
指针(3)
C语言昂,指针昂,最喜欢的一集,小时候学这一课我直接取地址了。上一篇博客给大家讲解了不同类型的指针变量的大小,今天来给大家讲解一下根据其所产生的一些性质。(往期回顾:指针(2)-C…...
 
外汇天眼:我碰到外汇投资骗局了吗?学会这5招,轻松识别外汇诈骗黑平台!
近年来外汇市场因为交易量大、流动性大、不容易被控盘、品种简单、风险相对低等特色,因此吸引不少投资人青睐,成为全球金融市场的热门选择。 然而,市面上充斥许多诈骗集团设立的黑平台,也打着投资外汇的名义行骗,不免会…...
 
一文解析子网掩码和默认网关,成为网络设置达人
随着互联网的普及,越来越多的人开始接触并使用电脑和网络。然而,对于很多初学者来说,网络设置中的子网掩码和默认网关是两个相对陌生的概念。今天,我们就来深入解析这两个概念,让你轻松掌握网络设置技巧! …...
 
二分查找法详解(6种变形)
前言 在之前的博客中,我给大家介绍了最基础的二分查找法(没学的话点我点我!) 今天我将带大家学习二分法的六种变形如何使用,小伙伴们,快来开始今天的学习吧! 文章目录 1,查找第一个…...
 
uniapp uview 页面多个select组件回显处理,默认选中
<view class"add-item column space-around" click"selectClick(1)"><text class"w-s-color-3 f-28">商品分类</text><view class"w-100 space-between"><!-- 第一个参数为你的单选数组,第二个…...
 
linux中playbook的控制语句
本章主要介绍 playbook中的控制语句。 使用 when 判断语句 block-rescue判断 循环语句 一个play中可以包含多个task,如果不想所有的task全部执行,可以设置只有满足某个 条件才执行这个task,不满足条件则不执行此task。本章主要讲解when 和 …...
 
MongoDB介绍
一、MongoDB介绍 1.1 mongoDB介绍 MongoDB 是由C语言编写的,是一个基于分布式文件存储的开源数据库系统。 在高负载的情况下,添加更多的节点,可以保证服务器性能。 MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB …...
 
再看参数校验
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 写一个接口,…...
 
计算机存储术语: 扇区,磁盘块,页
扇区(sector) 硬盘的读写以扇区为基本单位。磁盘上的每个磁道被等分为若干个弧段,这些弧段称之为扇区。硬盘的物理读写以扇区为基本单位。通常情况下每个扇区的大小是 512 字节。linux 下可以使用 fdisk -l 了解扇区大小: $ sudo /sbin/fdisk -l Disk …...
 
解决IDEA编译/启动报错:Abnormal build process termination
报错信息 报错信息如下: Abnormal build process termination: "D:\Software\Java\jdk\bin\java" -Xmx3048m -Djava.awt.headlesstrue -Djava.endorsed.dirs\"\" -Djdt.compiler.useSingleThreadtrue -Dpreload.project.path………………很纳…...
 
Jetpack DataStore
文章目录 Jetpack DataStore概述DataStore 对比 SP添加依赖库Preferences DataStore路径创建 Preferences DataStore获取数据保存数据修改数据删除数据清除全部数据 Proto DataStore配置AndroidStudio安装插件配置proto文件创建序列化器 创建 Proto DataStore获取数据保存数据修…...
 
在Portainer创建Nginx容器并部署Web静态站点实现公网访问
🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,…...
 
泛微e-cology XmlRpcServlet文件读取漏洞复现
漏洞介绍 泛微新一代移动办公平台e-cology不仅组织提供了一体化的协同工作平台,将组织事务逐渐实现全程电子化,改变传统纸质文件、实体签章的方式。泛微OA E-Cology 平台XmRpcServlet接口处存在任意文件读取漏洞,攻击者可通过该漏洞读取系统重要文件 (如数据库配置…...
 
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
 
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
 
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
 
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
 
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
 
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
 
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
