姿态识别、目标检测和跟踪的综合应用
引言:
近年来,随着人工智能技术的不断发展,姿态识别、目标检测和跟踪成为了计算机视觉领域的热门研究方向。这三个技术的综合应用为各个行业带来了巨大的变革和机遇。本文将分别介绍姿态识别、目标检测和跟踪的基本概念和算法,并探讨它们在实际应用中的重要性和优势。
一、姿态识别
1.1 姿态识别的概念与意义
姿态识别是指通过计算机视觉技术识别和理解人体的姿态和动作。它在人机交互、运动分析、安防监控等领域起着重要作用。通过姿态识别,计算机可以准确地感知人体的姿态状态,实现人机的自然交互和身体动作的实时监测。
1.2 姿态识别的算法与方法
介绍常见的姿态识别算法,如卷积神经网络(CNN)、循环神经网络(RNN)等。同时探讨基于深度学习的姿态识别方法、特征提取和关节定位等关键技术。
1.3 姿态识别的应用场景
详细介绍姿态识别在运动分析、虚拟现实、人机交互等领域的具体应用案例。
二、目标检测
2.1 目标检测的概念与意义
目标检测是指通过计算机视觉技术自动识别图像或视频中的特定目标物体。它在自动驾驶、智能安防、医学影像处理等领域具有广泛的应用前景。
2.2 目标检测的算法与方法
介绍常见的目标检测算法,如RCNN、YOLO、SSD等,并分析它们的优缺点和适用场景。重点介绍深度学习在目标检测中的应用,并探讨多目标检测、实时目标检测等技术。
2.3 目标检测的应用场景
具体介绍目标检测在自动驾驶、智能安防、图像搜索等领域的成功应用和实际效果。
三、跟踪技术
3.1 跟踪技术的概念与意义
跟踪技术指的是通过计算机视觉技术实现对目标在时间序列中的连续跟踪。它在视频监控、物体追踪等领域具有重要作用。
3.2 跟踪技术的算法与方法
介绍常见的跟踪算法,如卡尔曼滤波、粒子滤波等,并分析它们的优缺点和适用场景。重点介绍基于深度学习的目标跟踪方法,如Siamese网络、长短时记忆网络(LSTM)等。
3.3 跟踪技术的应用场景
具体介绍跟踪技术在视频监控、运动分析、虚拟现实等领域的应用案例和效果。
概述
YOLOv7姿态估计:一种快速准确的人体姿态估计模型
人体姿态估计是计算机视觉中的一项重要任务,具有各种应用,例如动作识别、人机交互和监控。近年来,基于深度学习的方法在人体姿态估计方面取得了显著的性能。其中最流行的深度学习方法之一是YOLOv7姿态估计模型。
算法
YOLOv7姿态估计模型是YOLOv7目标检测模型的扩展,使用单个神经网络同时预测图像中多个物体的边界框和类别概率。在YOLOv7姿态估计模型中,网络预测每个人的关键点位置,从而可以用于估计人的姿态。
网络
YOLOv7姿态估计模型基于深度卷积神经网络架构,由多个卷积层、最大池化和全连接层组成。网络接受输入图像并产生特征图,然后用于预测每个人的关键点位置。
数据集
YOLOv7姿态估计模型使用大型数据集进行训练,例如COCO(通用对象上下文)和MPII(马克斯·普朗克计算机科学研究所),这些数据集包含成千上万的人在各种姿势和环境中的注释图像。该模型使用监督学习和数据增强技术进行训练,例如随机缩放、旋转和平移输入图像。
优势
YOLOv7姿态估计模型的一个关键优势是其速度和准确性。该模型能够实时估计多个人的姿态,使其适用于人机交互和监控等应用。此外,该模型在COCO和MPII等基准数据集上实现了最先进的性能,展示了其准确性和鲁棒性。
结论
总之,YOLOv7姿态估计模型是一种快速准确的基于深度学习的人体姿态估计模型。其能够实时估计多个人的姿态,使其适用于各种应用,而其在基准数据集上的最先进性能证明了其有效性。随着深度学习的不断发展,我们可以预期在人体姿态估计方面会有进一步的改进,而YOLOv7姿态估计模型很可能在这些发展中发挥重要作用。
代码
def run(poseweights="yolov7-w6-pose.pt",source="football1.mp4",device='cpu',view_img=False,save_conf=False,line_thickness = 3,hide_labels=False, hide_conf=True):frame_count = 0 #count no of framestotal_fps = 0 #count total fpstime_list = [] #list to store timefps_list = [] #list to store fpsdevice = select_device(opt.device) #select devicehalf = device.type != 'cpu'model = attempt_load(poseweights, map_location=device) #Load model_ = model.eval()names = model.module.names if hasattr(model, 'module') else model.names # get class namesif source.isnumeric() :
环境安装教程
1.克隆项目并进入
#联系我:然后git clone my_projcet
2.linux创建虚拟环境
python3 -m venv psestenv
source psestenv/bin/activate
3.如果windows用户请用这个:
python3 -m venv psestenv cd psestenv
cd Scripts activate
cd ..
cd .. pip install --upgrade pip
4.pip install
pip install -r requirements.txt
结果展示
QQ767172261
相关文章:

姿态识别、目标检测和跟踪的综合应用
引言: 近年来,随着人工智能技术的不断发展,姿态识别、目标检测和跟踪成为了计算机视觉领域的热门研究方向。这三个技术的综合应用为各个行业带来了巨大的变革和机遇。本文将分别介绍姿态识别、目标检测和跟踪的基本概念和算法,并探…...

数据结构考试测试编程题
作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 🎂 作者介绍: 🎂🎂 🎂 🎉🎉🎉…...

力扣每日一题day37[113.路径总和ii]
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例 1: 输入:root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum 22 输出&a…...
Keras使用sklearn中的交叉验证和网格搜索
Keras是Python在深度学习领域非常受欢迎的第三方库,但Keras的侧重点是深度学习,而不是所以的机器学习。事实上,Keras力求极简主义,只专注于快速、简单地定义和构建深度学习模型所需要的内容。Python中的scikit-learn是非常受欢迎的…...
docker--Prometheus、Grafana、node_exporter的安装配置及Springboot集成Prometheus示例
1. 安装Prometheus Prometheus一个系统和服务监控系统。它以给定的时间间隔从配置的目标收集指标,计算规则表达式,显示结果,并在观察到某些条件为真时触发警报。 可观察性侧重于根据系统产生的数据了解系统的内部状态,这有助于确定基础设施是否健康。Prometheus是用于监视…...

数据结构和算法笔记2:二分法
二分法网上有两种写法,一种左闭右闭,一种左闭右开,个人习惯左闭右闭的写法, 有序数组查找数 这是标准二分法,对应力扣的704. 二分查找: 求值为target的索引 int search(vector<int>& nums, i…...

Mybatis3系列课程8-带参数查询
简介 上节课内容中讲解了查询全部, 不需要带条件查, 这节我们讲讲 带条件查询 目标 1. 带一个条件查询-基本数据类型 2.带两个条件查询-连个基本数据类型 3.带一个对象类型查询 为了实现目标, 我们要实现 按照主键 查询某个学生信息, 按照姓名和年级编号查询学生信息 按照学生…...

IDEA shorten command line介绍和JAR manifest 导致mybatis找不到接口类处理
如果类路径太长,或者有许多VM参数,程序就无法启动。原因是大多数操作系统都有命令行长度限制。在这种情况下,IntelliJIDEA将试图缩短类路径。最好选中 classpath file模式。 shorten command line 选项提供三种选项缩短类路径。 none&#x…...

泽攸科技SEM台式扫描电子显微镜
泽攸科技是一家国产的科学仪器公司,专注于研发、生产和销售原位电镜解决方案、扫描电镜整机、台阶仪、探针台等仪器。目前台式扫描电镜分为三个系列:ZEM15、ZEM18、ZEM20。 ZEM15台式扫描电镜: ZEM18台式扫描电镜: ZEM20台式扫描…...

华为交换机配置BGP的基本示例
BGP简介 定义 边界网关协议BGP(Border Gateway Protocol)是一种实现自治系统AS(Autonomous System)之间的路由可达,并选择最佳路由的距离矢量路由协议。早期发布的三个版本分别是BGP-1(RFC1105࿰…...

数据分析基础之《numpy(4)—ndarry运算》
一、逻辑运算 当我们要操作符合某一条件的数据时,需要用到逻辑运算 1、运算符 满足条件返回true,不满足条件返回false # 重新生成8只股票10个交易日的涨跌幅数据 stock_change np.random.normal(loc0, scale1, size(8, 10))# 获取前5行前5列的数据 s…...

分享一个项目——Sambert UI 声音克隆
文章目录 前言一、运行ipynb二、数据标注三、训练四、生成总结 前言 原教程视频 项目链接 运行一个ipynb,就可操作 总共四步 1)运行ipynb 2)数据标注 3)训练 4)生成 一、运行ipynb 等运行完毕后,获得该…...
ES6 语法精粹简读
本文旨在记录 ES6 的核心常用语法,略去一些细节。 文章目录 1 var 函数作用域与 let/const 块作用域2 解构赋值数组结构赋值对象结构赋值3 ES6 中字符串的新语法模板字符串模板编译标签模板4 ES6 中的函数默认值rest 参数箭头函数this 指向问题部署管道机制尾调用优化...

uniapp整合echarts(目前性能最优、渲染最快方案)
本文echarts示例如上图,可扫码体验渲染速度及loading效果,下文附带本小程序uniapp相关代码 实现代码 <template><view class="source...
解决Electron应用中的白屏问题的实用方法
在使用Electron构建应用程序时,一些开发者可能会面临窗口加载过程中出现的白屏问题。这种问题主要分为两个方面: Electron未加载完毕HTML: 这时Electron自身产生的白色背景可能导致用户在启动应用时看到一片空白。HTML加载渲染过程中的短暂白…...

大数据---34.HBase数据结构
一、HBase简介 HBase是一个开源的、分布式的、版本化的NoSQL数据库(即非关系型数据库),依托Hadoop分布式文件系统HDFS提供分布式数据存储,利用MapReduce来处理海量数据,用Zookeeper作为其分布式协同服务,一…...

【工具使用-有道云笔记】如何在有道云笔记中插入目录
一,简介 本文主要介绍如何在有道云笔记中插入目录,方便后续笔记的查看,供参考。 二,具体步骤 分为两个步骤:1,设置标题格式;2,插入标题。非常简单~ 2.1 设置标题格式 鼠标停在标…...

用户管理第2节课-idea 2023.2 后端一删除表,从零开始---【本人】
一、清空model文件夹下,所有文件 1.1.1效果如下: 1.1代码内容 package com.daisy.usercenter.model;import lombok.Data;Data public class User {private Long id;private String name;private Integer age;private String email; }二、清空mapper文件…...
如何添加jar包到本地Maven项目中
在 Maven 中添加一个外部 JAR 包的依赖,你需要使用 Maven 的 <dependency> 元素来指定该 JAR 包的坐标信息。以下是具体的步骤: 将 JAR 包手动添加到 Maven 本地仓库: 首先,确保将外部 JAR 包手动添加到 Maven 本地仓库。可…...

智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.学校优化算法4.实验参数设定5.算法结果6.…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...