智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.卷尾猴算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用卷尾猴算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.卷尾猴算法
卷尾猴算法原理请参考:https://blog.csdn.net/u011835903/article/details/123328669
卷尾猴算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
卷尾猴算法参数如下:
%% 设定卷尾猴优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明卷尾猴算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.卷尾猴算法4.实验参数设定5.算法结果6.参考文…...

前端传输formDate格式的数据,后端不能用@RequestBody接收
写了个接口,跟前端对接,前端说怎么一直415的报错 我寻思不对啊,我swagger都请求成功了,后来发现前端一直是以formdata格式提交的数据,这样我其实是可以不加RequestBody的; 知识点: RequestBody…...

【AivaAI】做音乐,无人能比它更专业
关于Aiva Aiva AIVA是音乐制作初创公司AIVA Technologies打造的一款人工智能产品。是人工智能领域头款获得国际认证的虚拟作曲家。 Aiva登录 可以选择Google登录,或者其他邮箱登录。 输入用户名,登录完成。 开始制作音乐 在主页选择“创建曲目…...

嵌入式开发网络配置——windows连热点,开发板和电脑网线直连
目录 电脑 WiFi 上网,开发板和电脑直连 使用场景 设置VMware虚拟机的网络配置 Ubuntu设置——版本18.04 编辑 windows设置 开发板设置 原因:虚拟机Linux移植可执行程序到开发板失败 最后发现虚拟机的Linuxping不通开发板 下面是我的解决方法 …...

基于Netty构建Websocket服务端
除了构建TCP和UDP服务器和客户端,Netty还可以用于构建WebSocket服务器。WebSocket是一种基于TCP协议的双向通信协议,可以在Web浏览器和Web服务器之间建立实时通信通道。下面是一个简单的示例,演示如何使用Netty构建一个WebSocket服务器。 项目…...
基于Rocket MQ扩展的无限延迟消息队列
基于Rocket MQ扩展的无限延迟消息队列 背景: Rocket MQ支持的延迟队列时间是固定间隔的, 默认19个等级(包含0等级): 0s, 1s, 5s, 10s, 30s, 1m, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 20m, 30m, 1h. 我们的需求是实现用户下单后48小时或72小时给用户发送逼单邮件. 使用默认的…...
Python办公自动化 – 日志分析和自动化FTP操作
Python办公自动化 – 日志分析和自动化FTP操作 以下是往期的文章目录,需要可以查看哦。 Python办公自动化 – Excel和Word的操作运用 Python办公自动化 – Python发送电子邮件和Outlook的集成 Python办公自动化 – 对PDF文档和PPT文档的处理 Python办公自动化 – 对…...

MyBatis 关联查询
目录 一、一对一查询(sqlMapper配置文件) 1、需求: 2、创建account和user实体类 3、创建AccountMapper 接口 4、创建并配置AccountMapper.xml 5、测试 二、一对多查询(sqlMapper配置文件) 1、需求:…...

NVIDIA NCCL 源码学习(十二)- double binary tree
上节我们以ring allreduce为例看到了集合通信的过程,但是随着训练任务中使用的gpu个数的扩展,ring allreduce的延迟会线性增长,为了解决这个问题,NCCL引入了tree算法,即double binary tree。 double binary tree 朴素…...

.net core webapi 大文件上传到wwwroot文件夹
1.配置staticfiles(program文件中) app.UseStaticFiles();2.在wwwroot下创建upload文件夹 3.返回结果封装 namespace webapi;/// <summary> /// 统一数据响应格式 /// </summary> public class Results<T> {/// <summary>/// 自定义的响应码ÿ…...

C++设计模式 #3策略模式(Strategy Method)
动机 在软件构建过程中,某些对象使用的的算法可能多种多样,经常改变。如果将这些算法都写在类中,会使得类变得异常复杂;而且有时候支持不频繁使用的算法也是性能负担。 如何在运行时根据需求透明地更改对象的算法?将…...
金融知识——OMS、EMS和PMS分别是什么意思
金融知识——OMS、EMS和PMS分别是什么意思 OMSEMSPMS OMS OMS(Order Management System)是为了管理头寸,以多种方式创建订单,并进行订单屈从检验以使得用户在订单创建时收到一些约束。在交易管理方面,OMS提供交易组合…...

Docker——微服务的部署
Docker——微服务的部署 文章目录 Docker——微服务的部署初识DockerDocker与虚拟机Docker架构安装DockerCentOS安装Docker卸载(可选)安装docker启动docker配置镜像加速 Docker的基本操作Docker的基本操作——镜像Docker基本操作——容器Docker基本操作—…...

AI时代架构设计新模式
云原生架构原则 云原生架构本身作为一种架构,也有若干架构原则作为应用架构的核心架构控制面,通过遵从这些架构原则可以让技术主管和架构师在做技术选择时不会出现大的偏差。 服务化原则 当代码规模超出小团队的合作范围时,就有必要进行服务…...
速盾网络:高防IP的好处
随着互联网的快速发展,网络安全问题日益突出,越来越多的企业和个人开始关注网络安全防护。其中,高防IP作为一种高效的防御手段,越来越受到用户的青睐。本文将介绍速盾网络高防IP的好处,帮助您了解其优势和应用场景。一…...

创建Maven Web工程
目录下也会有对应的生命周期。其中常用的是:clean、compile、package、install。 比如这里install ,如果其他项目需要将这里的模块作为依赖使用,那就可以 install 。安装到本地仓库的位置: Java的Web工程,所以我们要选…...

【PHP入门】2.2 流程控制
-流程控制- 流程控制:代码执行的方向 2.2.1控制分类 顺序结构:代码从上往下,顺序执行。(代码执行的最基本结构) 分支结构:给定一个条件,同时有多种可执行代码(块)&am…...

springCould中的zookeeper-从小白开始【3】
目录 1.启动zookeeper❤️❤️❤️ 2.创建8004模块 ❤️❤️❤️ 3.临时节点还是永久节点❤️❤️❤️ 4.创建zk80消费模块❤️❤️❤️ 1.启动zookeeper❤️❤️❤️ 进入自己zookeeper的bin目录下 分别使用命令: ./zkServer.sh start 和 ./zkCli.sh -serve…...

Node.js-模块化(二)
1. 模块化的基本概念 1.1 什么是模块化 模块化是指解决一个复杂问题时,自顶向下逐层将系统拆分成若干模块的过程。对于整个系统来说,模块是可组合、分解和更换的单元。 1.2 编程领域中的模块化 编程领域中的模块化,就是遵守固定的规则&…...
MAC 安装nginx
使用Homebrew方式进行安装 步骤: 1、更新 Homebrew brew update 2、下载并安装 Nginx brew install nginx 3、查看 nginx 配置信息 brew info nginx zhanghuaBreeze ~ % brew info nginx // 版本信息 > nginx: stable 1.25.1 (bottled), HEAD HTTP(S) se…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...