分布式搜索elasticsearch概念
什么是elasticsearch?
elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容

目录
elasticsearch的场景
elasticsearch的发展
Lucene篇
Elasticsearch篇
elasticsearch的安装
elasticsearch的场景
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack (ELK)。被广泛应用在日志数据分析、实时监控等领域。

elasticsearch是elastic stack的核心,负责存储、搜索、分析数据
elasticsearch的发展
Lucene篇
Lucene是一个ava语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。
官网地址: https://lucene.apache.org/
Lucene的优势:
- 易扩展
- 高性能(基于倒排索引)
Lucene的缺点:
- 只限于Java语言开发
- 学习曲线陡峭
- 不支持水平扩展
Elasticsearch篇
2004年ShayBanon基于Lucene开发了Compass。
2010年shay Banon 重写了Compass,取名为Elasticsearch。
目前最新的版本是:7.12.1
官网地址: https://www.elastic.co/cn/
相比与lucene,elasticsearch具备下列优势:
- 支持分布式,可水平扩展
- 提供Restful接口,可被任何语言调用
正排索引 与 倒排索引(Elasticsearch)
传统数据库(如MySQL)采用正向索引,例如给下表(tb goods)中的id创建索引

搜索'title'字段,'手机' 的内容 👉 select *from tb_goods where title like %手机%

正排索引:当模糊查询某字段时会逐一检索所有记录,效率较低
elasticsearch采用倒排索引
- 文档(document):每条数据就是一个文档(相对于Mysql,一个mysql表就是一个文档)
- 词条(term):文档按照语义分成的词语(记录文档中的关键词)

例:搜索'华为手机'(根据索引查询效率增加)

什么是文档和词条?
- 每一条数据就是一个文档
- 对文档中的内容分词,得到的词语就是词条
什么是正向索引?
- 基于文档id创建索引。查询词条时必须先找到文档,而后判断是否包
- 含词条
什么是倒排索引?
- 对文档内容分词,对词条创建索引,并记录词条所在文档的信息。查询时先根据词条查询到文档id,而后获取到文档
相关文章:
分布式搜索elasticsearch概念
什么是elasticsearch? elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容 目录 elasticsearch的场景 elasticsearch的发展 Lucene篇 Elasticsearch篇 elasticsearch的安装 elasticsearch的场景 elasticsear…...
Linux环境安装Hadoop
(1)下载Hadoop安装包并上传 下载Hadoop安装包到本地,并导入到Linux服务器的/opt/software路径下 (2)解压安装包 解压安装文件并放到/opt/module下面 [roothadoop100 ~]$ cd /opt/software [roothadoop100 software…...
swing快速入门(二十五)
注释很详细,直接上代码 新增内容 1.ImageIO.write读取并显示图片 2.ImageIO.writeImageIO.write读取并保存图片 package swing21_30;import javax.imageio.ImageIO; import java.awt.*; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent…...
智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.卷尾猴算法4.实验参数设定5.算法结果6.参考文…...
前端传输formDate格式的数据,后端不能用@RequestBody接收
写了个接口,跟前端对接,前端说怎么一直415的报错 我寻思不对啊,我swagger都请求成功了,后来发现前端一直是以formdata格式提交的数据,这样我其实是可以不加RequestBody的; 知识点: RequestBody…...
【AivaAI】做音乐,无人能比它更专业
关于Aiva Aiva AIVA是音乐制作初创公司AIVA Technologies打造的一款人工智能产品。是人工智能领域头款获得国际认证的虚拟作曲家。 Aiva登录 可以选择Google登录,或者其他邮箱登录。 输入用户名,登录完成。 开始制作音乐 在主页选择“创建曲目…...
嵌入式开发网络配置——windows连热点,开发板和电脑网线直连
目录 电脑 WiFi 上网,开发板和电脑直连 使用场景 设置VMware虚拟机的网络配置 Ubuntu设置——版本18.04 编辑 windows设置 开发板设置 原因:虚拟机Linux移植可执行程序到开发板失败 最后发现虚拟机的Linuxping不通开发板 下面是我的解决方法 …...
基于Netty构建Websocket服务端
除了构建TCP和UDP服务器和客户端,Netty还可以用于构建WebSocket服务器。WebSocket是一种基于TCP协议的双向通信协议,可以在Web浏览器和Web服务器之间建立实时通信通道。下面是一个简单的示例,演示如何使用Netty构建一个WebSocket服务器。 项目…...
基于Rocket MQ扩展的无限延迟消息队列
基于Rocket MQ扩展的无限延迟消息队列 背景: Rocket MQ支持的延迟队列时间是固定间隔的, 默认19个等级(包含0等级): 0s, 1s, 5s, 10s, 30s, 1m, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 20m, 30m, 1h. 我们的需求是实现用户下单后48小时或72小时给用户发送逼单邮件. 使用默认的…...
Python办公自动化 – 日志分析和自动化FTP操作
Python办公自动化 – 日志分析和自动化FTP操作 以下是往期的文章目录,需要可以查看哦。 Python办公自动化 – Excel和Word的操作运用 Python办公自动化 – Python发送电子邮件和Outlook的集成 Python办公自动化 – 对PDF文档和PPT文档的处理 Python办公自动化 – 对…...
MyBatis 关联查询
目录 一、一对一查询(sqlMapper配置文件) 1、需求: 2、创建account和user实体类 3、创建AccountMapper 接口 4、创建并配置AccountMapper.xml 5、测试 二、一对多查询(sqlMapper配置文件) 1、需求:…...
NVIDIA NCCL 源码学习(十二)- double binary tree
上节我们以ring allreduce为例看到了集合通信的过程,但是随着训练任务中使用的gpu个数的扩展,ring allreduce的延迟会线性增长,为了解决这个问题,NCCL引入了tree算法,即double binary tree。 double binary tree 朴素…...
.net core webapi 大文件上传到wwwroot文件夹
1.配置staticfiles(program文件中) app.UseStaticFiles();2.在wwwroot下创建upload文件夹 3.返回结果封装 namespace webapi;/// <summary> /// 统一数据响应格式 /// </summary> public class Results<T> {/// <summary>/// 自定义的响应码ÿ…...
C++设计模式 #3策略模式(Strategy Method)
动机 在软件构建过程中,某些对象使用的的算法可能多种多样,经常改变。如果将这些算法都写在类中,会使得类变得异常复杂;而且有时候支持不频繁使用的算法也是性能负担。 如何在运行时根据需求透明地更改对象的算法?将…...
金融知识——OMS、EMS和PMS分别是什么意思
金融知识——OMS、EMS和PMS分别是什么意思 OMSEMSPMS OMS OMS(Order Management System)是为了管理头寸,以多种方式创建订单,并进行订单屈从检验以使得用户在订单创建时收到一些约束。在交易管理方面,OMS提供交易组合…...
Docker——微服务的部署
Docker——微服务的部署 文章目录 Docker——微服务的部署初识DockerDocker与虚拟机Docker架构安装DockerCentOS安装Docker卸载(可选)安装docker启动docker配置镜像加速 Docker的基本操作Docker的基本操作——镜像Docker基本操作——容器Docker基本操作—…...
AI时代架构设计新模式
云原生架构原则 云原生架构本身作为一种架构,也有若干架构原则作为应用架构的核心架构控制面,通过遵从这些架构原则可以让技术主管和架构师在做技术选择时不会出现大的偏差。 服务化原则 当代码规模超出小团队的合作范围时,就有必要进行服务…...
速盾网络:高防IP的好处
随着互联网的快速发展,网络安全问题日益突出,越来越多的企业和个人开始关注网络安全防护。其中,高防IP作为一种高效的防御手段,越来越受到用户的青睐。本文将介绍速盾网络高防IP的好处,帮助您了解其优势和应用场景。一…...
创建Maven Web工程
目录下也会有对应的生命周期。其中常用的是:clean、compile、package、install。 比如这里install ,如果其他项目需要将这里的模块作为依赖使用,那就可以 install 。安装到本地仓库的位置: Java的Web工程,所以我们要选…...
【PHP入门】2.2 流程控制
-流程控制- 流程控制:代码执行的方向 2.2.1控制分类 顺序结构:代码从上往下,顺序执行。(代码执行的最基本结构) 分支结构:给定一个条件,同时有多种可执行代码(块)&am…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
