竞赛保研 基于LSTM的天气预测 - 时间序列预测
0 前言
🔥 优质竞赛项目系列,今天要分享的是
机器学习大数据分析项目
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 数据集介绍
df = pd.read_csv(‘/home/kesci/input/jena1246/jena_climate_2009_2016.csv’)
df.head()
如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。
给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。
下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。
下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。
def univariate_data(dataset, start_index, end_index, history_size, target_size):
data = []
labels = []
start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i)# Reshape data from (history`1_size,) to (history_size, 1)data.append(np.reshape(dataset[indices], (history_size, 1)))labels.append(dataset[i+target_size])return np.array(data), np.array(labels)
2 开始分析
2.1 单变量分析
首先,使用一个特征(温度)训练模型,并在使用该模型做预测。
2.1.1 温度变量
从数据集中提取温度
uni_data = df[‘T (degC)’]
uni_data.index = df[‘Date Time’]
uni_data.head()
观察数据随时间变化的情况
进行标准化
#标准化
uni_train_mean = uni_data[:TRAIN_SPLIT].mean()
uni_train_std = uni_data[:TRAIN_SPLIT].std()
uni_data = (uni_data-uni_train_mean)/uni_train_std
#写函数来划分特征和标签
univariate_past_history = 20
univariate_future_target = 0
x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT, # 起止区间univariate_past_history,univariate_future_target)
x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None,univariate_past_history,univariate_future_target)
可见第一个样本的特征为前20个时间点的温度,其标签为第21个时间点的温度。根据同样的规律,第二个样本的特征为第2个时间点的温度值到第21个时间点的温度值,其标签为第22个时间点的温度……
2.2 将特征和标签切片
BATCH_SIZE = 256
BUFFER_SIZE = 10000
train_univariate = tf.data.Dataset.from_tensor_slices((x_train_uni, y_train_uni))
train_univariate = train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()val_univariate = tf.data.Dataset.from_tensor_slices((x_val_uni, y_val_uni))
val_univariate = val_univariate.batch(BATCH_SIZE).repeat()
2.3 建模
simple_lstm_model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(8, input_shape=x_train_uni.shape[-2:]), # input_shape=(20,1) 不包含批处理维度
tf.keras.layers.Dense(1)
])
simple_lstm_model.compile(optimizer='adam', loss='mae')
2.4 训练模型
EVALUATION_INTERVAL = 200
EPOCHS = 10
simple_lstm_model.fit(train_univariate, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_univariate, validation_steps=50)
训练过程
训练结果 - 温度预测结果
2.5 多变量分析
在这里,我们用过去的一些压强信息、温度信息以及密度信息来预测未来的一个时间点的温度。也就是说,数据集中应该包括压强信息、温度信息以及密度信息。
2.5.1 压强、温度、密度随时间变化绘图
2.5.2 将数据集转换为数组类型并标准化
dataset = features.values
data_mean = dataset[:TRAIN_SPLIT].mean(axis=0)
data_std = dataset[:TRAIN_SPLIT].std(axis=0)
dataset = (dataset-data_mean)/data_stddef multivariate_data(dataset, target, start_index, end_index, history_size,target_size, step, single_step=False):data = []labels = []start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i, step) # step表示滑动步长data.append(dataset[indices])if single_step:labels.append(target[i+target_size])else:labels.append(target[i:i+target_size])return np.array(data), np.array(labels)
2.5.3 多变量建模训练训练
single_step_model = tf.keras.models.Sequential()single_step_model.add(tf.keras.layers.LSTM(32,input_shape=x_train_single.shape[-2:]))single_step_model.add(tf.keras.layers.Dense(1))single_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='mae')single_step_history = single_step_model.fit(train_data_single, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_single,validation_steps=50)def plot_train_history(history, title):loss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'b', label='Training loss')plt.plot(epochs, val_loss, 'r', label='Validation loss')plt.title(title)plt.legend()plt.show()plot_train_history(single_step_history,'Single Step Training and validation loss')
6 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

竞赛保研 基于LSTM的天气预测 - 时间序列预测
0 前言 🔥 优质竞赛项目系列,今天要分享的是 机器学习大数据分析项目 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/po…...

前端常用的开发工具
前端常用的开发工具🔖 文章目录 前端常用的开发工具🔖1. Snipaste--截图工具2. ScreenToGif--gif图片录制3. Typora--Markdown编辑器4. notepad--文本代码编辑器5. uTools--多功能工具6. EV录屏--录屏软件7. Xmind--思维导图8. Apifox -- 接口调试9. Tor…...

鸿蒙开发语言介绍--ArkTS
1.编程语言介绍 ArkTS是HarmonyOS主力应用开发语言。它在TypeScript (简称TS)的基础上,匹配ArkUI框架,扩展了声明式UI、状态管理等相应的能力,让开发者以更简洁、更自然的方式开发跨端应用。 2.TypeScript简介 自行补充TypeScript知识吧。h…...

关于“Python”的核心知识点整理大全36
目录 13.4.4 向下移动外星人群并改变移动方向 game_functions.py alien_invasion.py 13.5 射杀外星人 13.5.1 检测子弹与外星人的碰撞 game_functions.py alien_invasion.py 13.5.2 为测试创建大子弹 13.5.3 生成新的外星人群 game_functions.py alien_invasion.py …...

安装nodejs,配置环境变量并将npm设置淘宝镜像源
安装nodejs并将npm设置淘宝镜像源 1. 下载nodejs 个人不喜欢安装包,所以是下载zip包的方式。这里我下载的node 14解压包版本 下载地址如下:https://nodejs.org/dist/v14.15.1/node-v14.15.1-win-x64.zip 想要其他版本的小伙伴去https://nodejs.org/di…...

12.18构建哈夫曼树(优先队列),图的存储方式,一些细节(auto,pair用法,结构体指针)
为结构体自身时,用.调用成员变量;为结构体指针时,用->调用成员变量 所以存在结构体数组时,调用数组元素里的成员变量,就是要用. 结构体自身只有在new时才会创建出来,而其指针可以随意创建 在用new时&…...

《Python》面试常问:深拷贝、浅拷贝、赋值之间的关系(附可变与不可变)【用图文讲清楚!】
背景 想必大家面试或者平时学习经常遇到问python的深拷贝、浅拷贝和赋值之间的区别了吧?看网上的文章很多写的比较抽象,小白接收的难度有点大,于是乎也想自己整个文章出来供参考 可变与不可变 讲深拷贝和浅拷贝之前想讲讲什么是可变数据类型…...

使用PE信息查看工具和Dependency Walker工具排查因为库版本不对导致程序启动报错问题
目录 1、问题说明 2、问题分析思路 3、问题分析过程 3.1、使用Dependency Walker打开软件主程序,查看库与库的依赖关系,查看出问题的库 3.2、使用PE工具查看dll库的时间戳 3.3、解决办法 4、最后 VC常用功能开发汇总(专栏文章列表&…...
Python编程题目答疑「Python一对一辅导考试真题解析」
你好,我是悦创。 待会更新~ 更新计划 答案 题目 记得点赞收藏! 题目 之后更新 Solution Question 1 # 读取输入 a float(input("请输入实数 a: ")) b float(input("请输入实数 b: ")) c float(input("请输…...

Python---搭建Python自带静态Web服务器
1. 静态Web服务器是什么? 可以为发出请求的浏览器提供静态文档的程序。 平时我们浏览百度新闻数据的时候,每天的新闻数据都会发生变化,那访问的这个页面就是动态的,而我们开发的是静态的,页面的数据不会发生变化。 …...
在服务器上部署SpringBoot项目jar包
以下是在服务器上部署Spring Boot项目jar包的步骤: 打包项目: 使用IDEA或者命令行工具(如Maven或Gradle)将Spring Boot项目打包为一个可执行的jar文件。如果使用Maven,可以在项目的根目录下运行以下命令来打包项目&…...

[python]python实现对jenkins 的任务触发
目录 关键词平台说明背景一、安装 python-jenkins 库二、code三、运行 Python 脚本四、注意事项 关键词 python、excel、DBC、jenkins 平台说明 项目Valuepython版本3.6 背景 用python实现对jenkins 的任务触发。 一、安装 python-jenkins 库 pip install python-jenkin…...

Python生成圣诞节贺卡-代码案例剖析【第18篇—python圣诞节系列】
文章目录 ❄️Python制作圣诞节贺卡🐬展示效果🌸代码🌴代码剖析 ❄️Python制作圣诞树贺卡🐬展示效果🌸代码🌴代码剖析🌸总结 🎅圣诞节快乐! ❄️Python制作圣诞节贺卡 …...

深度剖析Ajax实现方式(原生框架、JQuery、Axios,Fetch)
Ajax学习 简介: Ajax 代表异步 JavaScript 和 XML(Asynchronous JavaScript and XML)的缩写。它指的是一种在网页开发中使用的技术,通过在后台与服务器进行数据交换,实现页面内容的更新,而无需刷新整个…...

任天堂,steam游戏机通过type-c给VR投屏与PD快速充电的方案 三type-c口投屏转接器
游戏手柄这个概念,最早要追溯到二十年前玩FC游戏的时候,那时候超级玛丽成为了许多人童年里难忘的回忆,虽然长大了才知道超级玛丽是翻译错误,应该是任天堂的超级马里奥,不过这并不影响大家对他的喜爱。 当时FC家用机手柄…...

Flink系列之:Checkpoints 与 Savepoints
Flink系列之:Checkpoints 与 Savepoints 一、概述二、功能和限制 一、概述 从概念上讲,Flink 的 savepoints 与 checkpoints 的不同之处类似于传统数据库系统中的备份与恢复日志之间的差异。 Checkpoints 的主要目的是为意外失败的作业提供恢复机制。 …...

【优质书籍推荐】LoRA微调的技巧和方法
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…...

Linux一行命令配置jdk环境
使用方法: 压缩包上传 到/opt, 更换命令中对应的jdk包名即可。 注意点:jdk-8u151-linux-x64.tar.gz 解压后名字是jdk1.8.0_151 sudo tar -zxvf jdk-8u151-linux-x64.tar.gz -C /opt && echo export JAVA_HOME/opt/jdk1.8.0_151 | sudo tee -a …...
从0开始刷剑指Offer
剑指Offer题解 剑指 Offer 11. 旋转数组的最小数字 思路: 二分O(logn) class Solution {public int stockManagement(int[] stock) {int l 0;int r stock.length - 1;while(l < r && stock[0] stock[r]) r --;if(stock[r] > stock[l]) return stock[0];whi…...

使用Java语言中的算法输出杨辉三角形
一、算法思想 创建一个名为YanghuiTest的类,然后创建二维数组,然后遍历二维数组的第一层,然后初始化第二层数组的大小,然后遍历第二层数组,然后将两侧的数组元素赋为1,然后其它数值通过公式计算,最后可以输…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...