【优质书籍推荐】LoRA微调的技巧和方法
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。今天给大家带来的文章是LoRA微调的技巧和方法,希望能对同学们有所帮助。
文章目录
- 1. 定义
- 2. LoRA微调参数
- 3. 书籍推荐
- 3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
- 3.2 内容介绍
- 3.3 适合人群
- 3.4 粉丝福利
- 3.5 自主购买
1. 定义
对于大语言模型而言,全量微调的代价是比较高的,需要数百GB的显存来训练具有几B参数的模型。为了解决资源不足的问题,大佬们提出了一种新的方法:低秩适应(Low-Rank Adaptation)。与微调OPT-175B相比,LoRA可以将可训练参数数量减少一万倍,并且GPU显存降低3倍以上。详细内容可参考论文《LoRA: Low-Rank Adaptation of Large Language Models》和HuggingFace PEFT博客文章《Parameter-Efficient Fine-Tuning of Billion-Scale Models on Low-Resource Hardware》。

LoRA是一种常用的高效微调的训练方法(PEFT),旨在加快大型语言模型的训练过程,同时减少显存的使用。通过引入更新矩阵对现有权重进行操作,LoRA专注于训练新添加的权重。LoRA方法具有以下的几大优点:
- 保留预训练权重:LoRA保持先前训练权重的冻结状态,最小化了灾难性遗忘的风险。这确保了模型在适应新数据时保留其现有知识。
- 已训练权重的可移植性:与原始模型相比,LoRA中使用的秩分解矩阵参数明显较少。这个特点使得经过训练的LoRA权重可以轻松地转移到其他环境中,使它们非常易于移植。
- 与注意力层集成:通常将LoRA矩阵合并到原始模型的注意力层中。此外,自适应缩放参数允许控制模型对新培训数据调整程度。
- 显存效率:LoRA改进后具有更高效利用显存资源能力,在不到本机微调所需计算量3倍情况下运行微调任务成为可能。
对于普通用户来说,依然很难满足1/3的显存需求。幸运的是,大佬们又发明了一种新的LoRA训练方法:量化低秩适应(QLoRA)。它利用bitsandbytes库对语言模型进行即时和近无损量化,并将其应用于LoRA训练过程中。这导致显存需求急剧下降,可以在2个3090卡上微调70B的模型。相比之下,要微调同等规模的模型通常需要超过16个A100-80GB GPU,对应的成本将非常巨大。详细内容可参考论文QLoRA: Efficient Finetuning of Quantized LLMs。

2. LoRA微调参数
首先最关键的参数为:低秩矩阵对应的秩(rank)。为了减少显存,对权重矩阵应用了低秩分解。在LoRA论文中,建议rank设置不小于8(r = 8)。请记住,较高的rank会导致更好的结果,但需要更多的显存。数据集的数量和复杂度越高,所需的rank就越高。
除此之外,另外需要设置的参数即为LoRA微调对应的网络层。最基本的训练对象是查询向量(例如q_proj)和值向量(例如v_proj)投影矩阵。不同模型对应的网络层如下所示:
| Model | Model size | Default module |
|---|---|---|
| Baichuan | 7B/13B | W_packbaichuan |
| Baichuan2 | 27B/13B | W_packbaichuan2 |
| BLOOM | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value |
| BLOOMZ | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value |
| ChatGLM | 36B | query_key_value |
| Falcon | 7B/40B/180B | query_key_value |
| InternLM | 7B/20B | q_proj,v_proj |
| LLaMA | 7B/13B/33B/65B | q_proj,v_proj |
| LLaMA-2 | 7B/13B/70B | q_proj,v_proj |
| Mistral | 7B | q_proj,v_proj |
| Mixtral | 8x7B | q_proj,v_proj |
| Phi | 1.5/21.3B/2.7B | Wqkv-Q |
| Qwen | 1.8B/7B/14B/72B | c_attn |
| XVERSE | 7B/13B/65B | q_proj,v_proj |
| Yi | 6B/34B | q_proj,v_proj |
3. 书籍推荐
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。
3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》

3.2 内容介绍
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模型、实战训练自己的ChatGPT、开源大模型ChatGLM使用详解、ChatGLM高级定制化应用实战、对ChatGLM进行高级微调。
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
3.3 适合人群
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》适合PyTorch深度学习初学者、大模型开发初学者、大模型开发人员学习,也适合高等院校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术等专业的师生作为教学参考书。
3.4 粉丝福利
- 本次送书两本
- 活动时间:截止到2023-12-27 9:00
- 参与方式:关注博主、并在此文章下面点赞、收藏并任意评论。
- 一本送给所有粉丝抽奖,另外一本送给购买专栏的同学们,购买专栏并且没有送过书的同学们可私信联系,先到先得,仅限一本
3.5 自主购买
小伙伴也可以访问链接进行自主购买哦~
直达京东购买链接🔗:《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
相关文章:
【优质书籍推荐】LoRA微调的技巧和方法
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…...
Linux一行命令配置jdk环境
使用方法: 压缩包上传 到/opt, 更换命令中对应的jdk包名即可。 注意点:jdk-8u151-linux-x64.tar.gz 解压后名字是jdk1.8.0_151 sudo tar -zxvf jdk-8u151-linux-x64.tar.gz -C /opt && echo export JAVA_HOME/opt/jdk1.8.0_151 | sudo tee -a …...
从0开始刷剑指Offer
剑指Offer题解 剑指 Offer 11. 旋转数组的最小数字 思路: 二分O(logn) class Solution {public int stockManagement(int[] stock) {int l 0;int r stock.length - 1;while(l < r && stock[0] stock[r]) r --;if(stock[r] > stock[l]) return stock[0];whi…...
使用Java语言中的算法输出杨辉三角形
一、算法思想 创建一个名为YanghuiTest的类,然后创建二维数组,然后遍历二维数组的第一层,然后初始化第二层数组的大小,然后遍历第二层数组,然后将两侧的数组元素赋为1,然后其它数值通过公式计算,最后可以输…...
人工智能_机器学习071_SVM支持向量机_人脸识别算法_LFW人脸数据加载_与理解---人工智能工作笔记0111
然后我们继续来看 这里有个lfw_home可以看到这个数据是,包含了人脸数据 然后我们继续看,在我们的顶你用户目录下,如果安装了,sklearn就会有这样一个目录, scikit_learn_data目录,这个里面可以看到 可以看到这个文件夹中有个 lfw_home文件夹是对.zip文件夹的解压,这个下载以后…...
Java 8中流Stream API详解
先给个示例,展示Java 8流API的优势 假设我们有以下任务: 给定一个字符串列表,我们需要执行以下操作: 筛选出所有以"A"开头的字符串。 将这些字符串转换为大写。 对这些字符串按照长度进行排序。 最后,将…...
通过 xlsx 解析上传excel的数据
一、前言 在前端开发中,特别是在后台管理系统中,导入数据(上传excel)到后端是是否常见的功能;而一般的实现方式都是通过接口将excel上传到后端,再有后端进行数据解析并做后续操作。 今天,来记录…...
Flink系列之:JDBC SQL 连接器
Flink系列之:JDBC SQL 连接器 一、JDBC SQL 连接器二、依赖三、创建 JDBC 表四、连接器参数五、键处理六、分区扫描七、Lookup Cache八、幂等写入九、JDBC Catalog十、JDBC Catalog 的使用十一、JDBC Catalog for PostgreSQL十二、JDBC Catalog for MySQL十三、数据…...
OpenCV与YOLO学习与研究指南
引言 OpenCV是一个开源的计算机视觉和机器学习软件库,而YOLO(You Only Look Once)是一个流行的实时对象检测系统。对于大学生和初学者而言,掌握这两项技术将大大提升他们在图像处理和机器视觉领域的能力。 基础知识储备 在深入…...
hive中map相关函数总结
目录 hive官方函数解释示例实战 hive官方函数解释 hive官网函数大全地址: hive官网函数大全地址 Return TypeNameDescriptionmapmap(key1, value1, key2, value2, …)Creates a map with the given key/value pairs.arraymap_values(Map<K.V>)Returns an un…...
HttpServletRequestWrapper、HttpServletResponseWrapper结合 过滤器 实现接口的加解密、国际化
目录 一、HttpServletRequestWrapper代码 二、HttpServletRequestWrapper代码 三、加解密过滤器代码 四、国际化过滤器代码 一、HttpServletRequestWrapper代码 package com.vteam.uap.security.httpWrapper;import jakarta.servlet.ReadListener; import jakarta.servlet.…...
最大通关数
洛洛和晶晶计划一起挑战峡谷深渊,峡谷左右有不同数量的关卡,每个关卡需要不同的紫水晶通关,用给定的紫水晶依次通过最多的关卡。 (笔记模板由python脚本于2023年12月23日 12:16:50创建,本篇笔记适合熟悉贪心算法的coder翻阅) 【学…...
MySQL中EXPLAIN关键字解释
什么是MySQL的索引 索引是帮助MySQL高效获取数据的数据结构 MySQL再存储数据之外,数据库系统中还维护者满足特定查找算法的数据结构,这些数据结构以某种引用表中的数据,这样我们就可以通过数据结构上实现的高级查找算法来快速…...
初始JavaScript详解【精选】
Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍初始JavaScript以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 目录 ⭐…...
计数排序,基数排序及排序总结
稳定性:当要排序的数组有相同数据时,排序后相同数据的相对位置不变,则称该排序算法稳定,否则即为不稳定. 在这里我在说说计数排序吧,计数排序就是将给定数组中的数进行计数,在从小到大依次输出即可。简单过…...
【LeetCode】459. 重复的子字符串(KMP2.0)
今日学习的文章链接和视频链接 leetcode题目地址:459. 重复的子字符串 代码随想录题解地址:代码随想录 题目简介 给定一个非空的字符串 s ,检查是否可以通过由它的一个子串重复多次构成。 看到题目的第一想法(可以贴代码) 1.…...
CSS(五) -- 动效实现(立体盒子旋转-四方体+正六边)
一. 四面立体旋转 正方形旋转 小程序中 wxss中 <!-- 背景 --><view class"dragon"><!--旋转物体位置--><view class"dragon-position"><!--旋转 加透视 有立体的感觉--><view class"d-parent"><view …...
Win10使用OpenSSL生成证书的详细步骤(NodeJS Https服务器源码)
远程开启硬件权限,会用到SSL证书。 以下是Win10系统下用OpenSSL生成测试用证书的步骤。 Step 1. 下载OpenSSL,一般选择64位的MSI Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions 一路点下来,如果后续请你捐款ÿ…...
sql_lab之sqli中的堆叠型注入(less-38)
堆叠注入(less-38) 1.判断注入类型 http://127.0.0.3/less-38/?id1 and 12 -- s 没有回显 http://127.0.0.3/less-38/?id1 and 11 -- s 有回显 则说明是单字节’注入 2.查询字段数 http://127.0.0.3/less-38/?id1 order by 4 -- s 报错 http:/…...
第5章-第3节-Java中对象的封装性以及局部变量、this、static
1、局部变量 【问题1】:什么是局部变量? 答:定义在局部位置的变量就是局部变量。 【问题2】:什么是局部位置? 答:方法的形参位置、方法体的内部。 【位置关系图】: class Xxx { //成员位…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
