模式识别与机器学习(十一):Bagging
1.原理
Bagging [Breiman, 1996a] 是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrap sampling)。给定包含m 个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时该样本仍有可能被选中,这样,经过m次随机采样操作,我们得到含m 个样本的采样集,初始训练集中有的样本在采样集里多次出现,有的则从未出现,初始训练集中约有63.2%的样本出现在来样集中。
照这样,我们可采样出T 个含m 个训练样本的采样集,然后基于每个采样集训练出一个基学习器,再将这些基学习器进行结合.这就是Bagging 的基本流程.在对预测输出进行结合时, Bagging 通常对分类任务使用简单投票法,对回归任务使用简单平均法.若分类预测时出现两个类收到同样票数的情形,则最简单的做法是随机选择一个,也可进一步考察学习器投票的置信度来确定最终胜者。其步骤如下:
1.对于给定的训练样本S,每轮从训练样本S中采用有放回抽样(Booststraping)的方式抽取M个训练样本,共进行n轮,得到了n个样本集合,需要注意的是这里的n个训练集之间是相互独立的。
2.在获取了样本集合之后,每次使用一个样本集合得到一个预测模型,对于n个样本集合来说,我们总共可以得到n个预测模型。
3.如果我们需要解决的是分类问题,那么我们可以对前面得到的n个模型采用投票的方式得到分类的结果,对于回归问题来说,我们可以采用计算模型均值的方法来作为最终预测的结果。
2.代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建决策树分类器
base_estimator = DecisionTreeClassifier()# 创建Bagging分类器
clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=100, random_state=42)# 训练模型
clf.fit(X_train, y_train)# 预测测试集
y_pred = clf.predict(X_test)# 打印预测结果
print(y_pred)
我们使用了鸢尾花数据集,这是一个常用的多类别分类数据集。我们首先加载数据,然后划分为训练集和测试集。然后,我们创建一个决策树分类器作为基学习器,并创建一个Bagging分类器,使用训练集对其进行训练。最后,我们使用训练好的模型对测试集进行预测,并打印出预测结果。
BaggingClassifier的参数base_estimator表示基学习器,n_estimators表示基学习器的数量,这些参数都可以根据需要进行调整。
相关文章:

模式识别与机器学习(十一):Bagging
1.原理 Bagging [Breiman, 1996a] 是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrap sampling)。给定包含m 个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得…...
数据压缩(哈夫曼编码)
【问题描述】在数据压缩问题中,需要将数据文件转换成由二进制字符0、1组成的二进制串,称之为编码,已知待压缩的数据中包含若干字母(A-Z),为获得更好的空间效率,请设计有效的用于数据压缩的二进制…...

移动安全APP--Frida+模拟器,模拟器+burp联动
最近测APP被通报了,问题点测得比较深,涉及到frida和burp抓包,一般在公司可能会有网络的限制,手机没办法抓包,我就直接在模拟器上试了,就在这记录一下安装过程。 目录 一、Frida安装 二、burp与逍遥模拟器…...

MATLAB遗传算法工具箱的三种使用方法
MATLAB中有三种调用遗传算法的方式: 一、遗传算法的开源文件 下载“gatbx”压缩包文件,解压后,里面有多个.m文件,可以看到这些文件的编辑日期都是1998年,很古老了。 这些文件包含了遗传算法的基础操作,包含…...
复习linux——时间同步服务
加密和安全当前都离不开时间的同步,否则各种网络服务可能不能正常运行 时间错误可能导致证书应用出错 时间同步服务 多主机协作工作时,各个主机的时间同步很重要,时间不一致会造成很多重要应用故障,利用NTP协议使网络中的各个计算机时间达到…...

如何在Linux设置JumpServer实现无公网ip远程访问管理界面
文章目录 前言1. 安装Jump server2. 本地访问jump server3. 安装 cpolar内网穿透软件4. 配置Jump server公网访问地址5. 公网远程访问Jump server6. 固定Jump server公网地址 前言 JumpServer 是广受欢迎的开源堡垒机,是符合 4A 规范的专业运维安全审计系统。JumpS…...

【Git】在 IDEA 中合并多个 commit 为一个
文章目录 1 未提交到远程分支1.1 需求说明1.2 reset 操作1.3 再次 push 2 已经提交到远程分支2.1 需求说明2.2 rebase 操作2.3 强制 push 分两种情况: 一种是本地提交还没推到远程,这种好处理另一种是已经提交到远程分支,这个略麻烦 1 未提…...

性能实战(一) --- clock_gettime造成系统整体cpu过高定位过程
问题背景 有一台linux服务器测试环境cpu经常到达80%,造成系统卡顿,部分功能不可用. 分析步骤 1.使用perf制作cpu火焰图 通过制作cpu火焰图,发现很多进程都存在大量的clock_gettime系统调用. 2. 使用bcc工具funclatency`进一步查看clock_gettime的调用次数 # /usr/share/bc…...
Ai 会替代人类工作吗?
目录 一、分析 二、一些案例 三、总结 一、分析 人工智能(AI)的发展和应用正在改变我们的生活和工作方式。在某些领域,AI已经显示出了强大的能力和潜力,可以比人类更快、更准确地完成任务。然而,是否会完全取代人类…...

神经网络:深度学习基础
1.反向传播算法(BP)的概念及简单推导 反向传播(Backpropagation,BP)算法是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见算法。BP算法对网络中所有权重计算…...

如何在Windows上搭建WebDAV服务并通过内网穿透实现公网访问
文章目录 前言1. 安装IIS必要WebDav组件2. 客户端测试3. 使用cpolar内网穿透,将WebDav服务暴露在公网3.1 安装cpolar内网穿透3.2 配置WebDav公网访问地址 4. 映射本地盘符访问 前言 在Windows上如何搭建WebDav,并且结合cpolar的内网穿透工具实现在公网访…...

【Transformer框架代码实现】
Transformer Transformer框架注意力机制框架导入必要的库Input Embedding / Out EmbeddingPositional EmbeddingTransformer EmbeddingScaleDotProductAttention(self-attention)MultiHeadAttention 多头注意力机制EncoderLayer 编码层Encoder多层编码块/前馈网络层…...

Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580
Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现) 漏洞名称 漏洞描述 Apache ShenYu是一个异步的,高性能的&#x…...

锐捷配置重发布RIP进OSPF中
一、实验拓扑 二、实验目的 使用两种动态路由协议,并使两种协议间的路由可以传递 三、实验配置 第一步:配置全网基本IP R1 Ruijie>enable Ruijie#configure terminal Ruijie(config)#interface gigabitEthernet 0/0 Ruijie(config-if-GigabitEthe…...
Android R修改wifi热点默认为隐藏热点以及禁止自动关闭热点
前言 Android R系统中WLAN 热点设置里面默认是没有wifi热点的隐藏设置选项的,如果默认wifi热点为隐藏热点可以修改代码实现。另外wifi热点设置选项里面有个自动关闭热点,这个选项默认是打开的,有些机器里面配置wifi热点后默认是需要关闭掉的,以免自动关闭后要手动打开。 …...

智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工大猩猩部队算法4.实验参…...

[JS设计模式]Flyweight Pattern
Flyweight pattern 享元模式是一种结构化的设计模式,主要用于产生大量类似对象而内存又有限的场景。享元模式能节省内存。 假设一个国际化特大城市SZ;它有5个区,分别为nanshan、futian、luohu、baoan、longgang;每个区都有多个图…...
【.Net8教程】(一)读取配置文件全面总结
环境:.net8.0 1. 准备条件 先在appsettings.Development.json或appsettings.json添加配置 添加一个DbOption {"DbOption": {"Conn": "foolishsundaycsdn"} }2.直接读取json配置节点的几种写法 在Main函数中读取json配置 方式一 …...

亚信安慧AntDB:支撑中国广电5G业务的数据库之力
自2019年6月获得5G牌照以来,中国广电积极利用700MHz频谱资源,迅速崛起为第四大运营商,标志着其在数字通信领域取得的巨大成就。通过与中国移动紧密合作,共建共享基站已超过400万座,为实现自主运营和差异化竞争提供了坚…...

C++哈希表的实现
C哈希表的实现 一.unordered系列容器的介绍二.哈希介绍1.哈希概念2.哈希函数的常见设计3.哈希冲突4.哈希函数的设计原则 三.解决哈希冲突1.闭散列(开放定址法)1.线性探测1.动图演示2.注意事项3.代码的注意事项4.代码实现 2.开散列(哈希桶,拉链法)1.概念2.动图演示3.增容问题1.拉…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...

ZYNQ学习记录FPGA(二)Verilog语言
一、Verilog简介 1.1 HDL(Hardware Description language) 在解释HDL之前,先来了解一下数字系统设计的流程:逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端,在这个过程中就需要用到HDL,正文…...
[QMT量化交易小白入门]-六十二、ETF轮动中简单的评分算法如何获取历史年化收益32.7%
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。 QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。 文章目录 相关阅读1. 策略概述2. 趋势评分模块3 代码解析4 木头…...

Gitlab + Jenkins 实现 CICD
CICD 是持续集成(Continuous Integration, CI)和持续交付/部署(Continuous Delivery/Deployment, CD)的缩写,是现代软件开发中的一种自动化流程实践。下面介绍 Web 项目如何在代码提交到 Gitlab 后,自动发布…...

python3GUI--基于PyQt5+DeepSort+YOLOv8智能人员入侵检测系统(详细图文介绍)
文章目录 一.前言二.技术介绍1.PyQt52.DeepSort3.卡尔曼滤波4.YOLOv85.SQLite36.多线程7.入侵人员检测8.ROI区域 三.核心功能1.登录注册1.登录2.注册 2.主界面1.主界面简介2.数据输入3.参数配置4.告警配置5.操作控制台6.核心内容显示区域7.检…...