神经网络:池化层知识点
1.CNN中池化的作用
池化层的作用是对感受野内的特征进行选择,提取区域内最具代表性的特征,能够有效地减少输出特征数量,进而减少模型参数量。按操作类型通常分为最大池化(Max Pooling)、平均池化(Average Pooling)和求和池化(Sum Pooling),它们分别提取感受野内最大、平均与总和的特征值作为输出,最常用的是最大池化和平均池化。
2.全局池化的作用
全局池化主要包括全局平均池化和全局最大池化。


接下来,Rocky以全局平均池化为例,讲述其如何在深度学习网络中发挥作用。
刚才已经讲过,全局平均池化就是对最后一层卷积的特征图,每个通道求整个特征图的均值。如下图所示:

一般网络的最后会再接几个全连接层,但全局池化后的feature map相当于一像素,所以最后的全连接其实就成了一个加权相加的操作。这种结构比起直接的全连接更加直观,参数量大大幅下降,并且泛化性能更好:

全局池化的作用:
1.降低信息冗余 :
- 池化层有助于提取输入特征图中的主要信息,同时抑制次要信息。这种操作使得模型更专注于重要特征,减少冗余或不相关的特征,有利于模型的训练和泛化能力。
2.特征降维与下采样 :
- 池化操作导致输出特征图的尺寸减小,实现了特征降维和下采样的效果。这有助于减少计算量,并提高后续层对图像特征的感知范围,使得一个池化后的像素对应前面图片中的一个区域。
3.特征压缩与网络简化 :
- 池化层能够对特征图进行压缩,减少计算资源的消耗,简化网络结构,降低模型复杂度,有助于防止过拟合,提高模型的泛化能力。
4.提升模型的不变性 :
- 池化操作有助于提升模型对尺度、旋转和平移的不变性。经过池化后的特征图,在输入特征图的大小或旋转角度发生变化时,输出特征图的大小和旋转角度保持不变。这种不变性有助于提高模型的泛化能力和鲁棒性。
5.实现非线性。
3.池化的分类
A. 一般池化(General Pooling):
在CNN中,池化层用于减小特征图的空间尺寸,以降低计算量并减少过拟合的可能性。最常见的池化操作有两种:
平均池化(Average Pooling):
- 计算图像区域的平均值作为该区域池化后的值。
- 能够抑制由于邻域内大小受限造成估计值方差增大的现象。
- 其特点是对于背景的保留效果更好。
最大池化(Max Pooling):
- 选取图像区域的最大值作为该区域池化后的值。
- 能够抑制网络参数误差造成估计均值偏移的现象。
- 其特点是更好地提取纹理信息。
随机池化(Stochastic Pooling):
- 根据概率对局部的值进行采样,采样结果便是池化结果。
B. 重叠池化(Overlapping Pooling):
在某些情况下,相邻的池化窗口之间可以有重叠区域。这种情况下一般会设置池化窗口的大小(size)大于步幅(stride)。
重叠池化的特点是相比于常规池化操作,它可以更充分地捕获图像特征,但也可能导致计算量增加。
这些池化方法是CNN中常用的技术手段,用于在保留重要信息的同时减少数据尺寸和参数量,从而改善模型的性能和泛化能力。
4.池化的进阶使用---SPP结构介绍
论文名称:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
下载地址:https://arxiv.org/abs/1406.4729
空间金字塔池化(Spatial Pyramid Pooling,SPP)层的引入解决了在传统卷积神经网络(CNN)中需要固定输入图像尺寸的限制。传统的全连接层对于输入要求固定大小的特征向量,这意味着所有输入图像需要统一尺寸,通常需要进行裁剪或拉伸,导致图像失真。SPP层允许网络接受不同尺寸的输入图像,通过金字塔形状的池化区域对不同大小的特征图进行整合和提取特征。其作用在于将不同大小的特征图转换成固定大小的特征向量,使得在连接全连接层之前,所有输入都具有相同的大小,无需提前处理图像。这种灵活性提高了网络的适用性和泛化能力,使得模型能够更灵活地处理各种尺寸的输入。


SPP(空间金字塔池化)的显著特点有:
固定大小的输出:无论输入尺寸如何,SPP能够产生固定大小的输出,克服了全连接层要求固定长度输入的限制。
多个窗口的池化:SPP采用多个窗口的池化,使其能够在不同尺度下提取特征。
尺度不变性和特征一致性:可以处理不同纵横比和尺寸的输入图像,增强了模型的尺度不变性,降低了过拟合的风险。
其他特点包括:
多样性训练图像对网络收敛更容易:SPP允许训练使用不同尺寸的图像,相较于单一尺寸的训练图像,这种多样性训练更有利于网络的收敛。
独立于特定网络设计和结构:SPP可用作卷积神经网络的最后一层,不会影响网络结构,仅替换了原本的池化层。
适用于图像分类和目标检测:SPP不仅适用于图像分类,还可用于目标检测等任务,扩展了其应用领域。
SPP的这些特点使得它成为一个强大的工具,在处理不同尺寸、不同纵横比的图像时,保持固定长度特征向量的输出,提高了模型的灵活性和泛化能力。
相关文章:
神经网络:池化层知识点
1.CNN中池化的作用 池化层的作用是对感受野内的特征进行选择,提取区域内最具代表性的特征,能够有效地减少输出特征数量,进而减少模型参数量。按操作类型通常分为最大池化(Max Pooling)、平均池化(Average Pooling)和求和池化(Sum Pooling)&a…...
微服务常见的配置中心简介
微服务架构中,常见的配置中心包括以下几种: Spring Cloud Config: Spring Cloud Config是官方推荐的配置中心解决方案,它支持将配置文件存储在Git、SVN等版本控制系统中。通过提供RESTful API,各个微服务可以远程获取和…...
银河麒麟v10 rpm安装包 安装mysql 8.35
银河麒麟v10 rpm安装包 安装mysql 8.35 1、卸载mariadb2、下载Mysql安装包3、安装Mysql 8.353.1、安装Mysql 8.353.3、安装后配置 1、卸载mariadb 由于银河麒麟v10系统默认安装了mariadb 会与Mysql相冲突,因此首先需要卸载系统自带的mariadb 查看系统上默认安装的M…...
一篇文章带你搞定CTFMice基本操作
CTF比赛是在最短时间内拿到最多的flag,mice必须要有人做,或者一支战队必须留出一块时间专门写一些mice,web,pwn最后的一两道基本都会有难度,这时候就看mice的解题速度了! 说实话,这是很大一块&…...
Spring security之授权
前言 本篇为大家带来Spring security的授权,首先要理解一些概念,有关于:权限、角色、安全上下文、访问控制表达式、方法级安全性、访问决策管理器 一.授权的基本介绍 Spring Security 中的授权分为两种类型: 基于角色的授权&…...
模式识别与机器学习(十一):Bagging
1.原理 Bagging [Breiman, 1996a] 是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrap sampling)。给定包含m 个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得…...
数据压缩(哈夫曼编码)
【问题描述】在数据压缩问题中,需要将数据文件转换成由二进制字符0、1组成的二进制串,称之为编码,已知待压缩的数据中包含若干字母(A-Z),为获得更好的空间效率,请设计有效的用于数据压缩的二进制…...
移动安全APP--Frida+模拟器,模拟器+burp联动
最近测APP被通报了,问题点测得比较深,涉及到frida和burp抓包,一般在公司可能会有网络的限制,手机没办法抓包,我就直接在模拟器上试了,就在这记录一下安装过程。 目录 一、Frida安装 二、burp与逍遥模拟器…...
MATLAB遗传算法工具箱的三种使用方法
MATLAB中有三种调用遗传算法的方式: 一、遗传算法的开源文件 下载“gatbx”压缩包文件,解压后,里面有多个.m文件,可以看到这些文件的编辑日期都是1998年,很古老了。 这些文件包含了遗传算法的基础操作,包含…...
复习linux——时间同步服务
加密和安全当前都离不开时间的同步,否则各种网络服务可能不能正常运行 时间错误可能导致证书应用出错 时间同步服务 多主机协作工作时,各个主机的时间同步很重要,时间不一致会造成很多重要应用故障,利用NTP协议使网络中的各个计算机时间达到…...
如何在Linux设置JumpServer实现无公网ip远程访问管理界面
文章目录 前言1. 安装Jump server2. 本地访问jump server3. 安装 cpolar内网穿透软件4. 配置Jump server公网访问地址5. 公网远程访问Jump server6. 固定Jump server公网地址 前言 JumpServer 是广受欢迎的开源堡垒机,是符合 4A 规范的专业运维安全审计系统。JumpS…...
【Git】在 IDEA 中合并多个 commit 为一个
文章目录 1 未提交到远程分支1.1 需求说明1.2 reset 操作1.3 再次 push 2 已经提交到远程分支2.1 需求说明2.2 rebase 操作2.3 强制 push 分两种情况: 一种是本地提交还没推到远程,这种好处理另一种是已经提交到远程分支,这个略麻烦 1 未提…...
性能实战(一) --- clock_gettime造成系统整体cpu过高定位过程
问题背景 有一台linux服务器测试环境cpu经常到达80%,造成系统卡顿,部分功能不可用. 分析步骤 1.使用perf制作cpu火焰图 通过制作cpu火焰图,发现很多进程都存在大量的clock_gettime系统调用. 2. 使用bcc工具funclatency`进一步查看clock_gettime的调用次数 # /usr/share/bc…...
Ai 会替代人类工作吗?
目录 一、分析 二、一些案例 三、总结 一、分析 人工智能(AI)的发展和应用正在改变我们的生活和工作方式。在某些领域,AI已经显示出了强大的能力和潜力,可以比人类更快、更准确地完成任务。然而,是否会完全取代人类…...
神经网络:深度学习基础
1.反向传播算法(BP)的概念及简单推导 反向传播(Backpropagation,BP)算法是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见算法。BP算法对网络中所有权重计算…...
如何在Windows上搭建WebDAV服务并通过内网穿透实现公网访问
文章目录 前言1. 安装IIS必要WebDav组件2. 客户端测试3. 使用cpolar内网穿透,将WebDav服务暴露在公网3.1 安装cpolar内网穿透3.2 配置WebDav公网访问地址 4. 映射本地盘符访问 前言 在Windows上如何搭建WebDav,并且结合cpolar的内网穿透工具实现在公网访…...
【Transformer框架代码实现】
Transformer Transformer框架注意力机制框架导入必要的库Input Embedding / Out EmbeddingPositional EmbeddingTransformer EmbeddingScaleDotProductAttention(self-attention)MultiHeadAttention 多头注意力机制EncoderLayer 编码层Encoder多层编码块/前馈网络层…...
Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580
Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现) 漏洞名称 漏洞描述 Apache ShenYu是一个异步的,高性能的&#x…...
锐捷配置重发布RIP进OSPF中
一、实验拓扑 二、实验目的 使用两种动态路由协议,并使两种协议间的路由可以传递 三、实验配置 第一步:配置全网基本IP R1 Ruijie>enable Ruijie#configure terminal Ruijie(config)#interface gigabitEthernet 0/0 Ruijie(config-if-GigabitEthe…...
Android R修改wifi热点默认为隐藏热点以及禁止自动关闭热点
前言 Android R系统中WLAN 热点设置里面默认是没有wifi热点的隐藏设置选项的,如果默认wifi热点为隐藏热点可以修改代码实现。另外wifi热点设置选项里面有个自动关闭热点,这个选项默认是打开的,有些机器里面配置wifi热点后默认是需要关闭掉的,以免自动关闭后要手动打开。 …...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
