D3839|完全背包
完全背包:
首先01背包的滚动数组中的解法是内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}
同时找到规律,如果存在后序遍历(比如01背包的滚动数组)的话,两个for循环的顺序就不可以变,但如果都是正序的话,两个for循环的顺序就可以进行改变。
518.零钱兑换||
题解复盘:
1)dp数组的含义:dp[j]:凑成总金额j的货币组合数为dp[j]
2)数组的递推公式:dp[j] += dp[j - coins[i]];
3)初始化:
dp[0] = 1 ;
下标非0的dp[j]初始化为0,dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。
4)确定遍历顺序:
所以纯完全背包是能凑成总和就行,不用管怎么凑的。
本题是求凑出来的方案个数,且每个方案个数是为组合数。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品
5)举例推导dp数组

大概的数字变化情况,coins[1]的dp[2] = coins[0]那排的dp[2] + coins[1]的dp[0],不选coins[1]的方法数加上选coins[1]的方法数.
class Solution {public int change(int amount, int[] coins) {int[] dp = new int[amount+1];dp[0] = 1;for(int i = 0;i<coins.length;i++){for(int j=coins[i];j<amount+1;j++ ){if(j-coins[i]<0){dp[j] = dp[j];}else{dp[j] = dp[j]+dp[j-coins[i]];}}}return dp[amount];}
}
377.组合总和IV
这道题相较于上一道感觉是由求组合数变为了求排列数。
class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target+1];Arrays.sort(nums);if(nums[0]<target){dp[0] = 1;}else{dp[0] = 0;}for(int i = nums[0];i<target+1;i++){for(int j = 0;j<nums.length;j++){if(i-nums[j]>=0){dp[i] = dp[i]+dp[i-nums[j]];}else{dp[i] = dp[i];}}}return dp[target];}
}
70. 爬楼梯(进阶版)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数
初始思路:
之前的爬楼梯每次爬1,2个台阶,dp(3) = dp(1)+dp(2)
由此推断每次爬1 <= m,dp(m+1) = dp(m)+dp(m-1)+...+dp(1)
分析动态规划五部曲:
(1)dp数组的含义:dp[j] 爬j阶台阶的方法数。
(2)dp的递推公式:
dp[n] = dp[n-m]+dp[n-m+1]+...+dp[n-1];
(3) 初始化:
dp[1] = 1;
dp[2] = 2;
dp[3] = dp[2]+dp[1]+1;
dp[4] = dp[3]+dp[2]+dp[1]+1;
dp[0] = 1;
dp[1] = dp[1]+dp[0];
dp[2] = dp[2]+dp[1]+dp[0];
(4)循环方式,先背包容量再物品,这样每一个容量都可以遍历一次所需要的物品
(5)举例:
import java.util.Arrays;
import java.util.Scanner;public class Main {public static int climbStairs(int n, int m) {int[] dp = new int[n + 1];Arrays.fill(dp, 0);dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (i - j >= 0) {dp[i] += dp[i - j];}}}return dp[n];}public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int m = scanner.nextInt();System.out.println(climbStairs(n, m));}
}
可以理解题解,但是卡码网会超时不知道为什么。
322. 零钱兑换
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
初始思路&&题解复盘:
感觉是在完全背包的基础上变为了最少的硬币个数。之前是由小数开始遍历,如果要是最少的硬币个数感觉从大数开始遍历比较好?
动态规划五部曲:
1.dp数组的定义
dp[j]组成j元所需要的最少硬币数
2.递归数组
dp[j] = Math.min(dp[j],dp[j-coins[i]]+1)
3.初始化(这里没想到)
dp[0] = 0;
dp[i] = MAX_VALUE;
4.遍历顺序
考虑到组合问题,所以先循环物品,再循环背包
只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要
//只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要if (dp[j - coins[i]] != max) {//选择硬币数目最小的情况dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}
5.推导
所以这道题目非常关键的地方一个是注意初始化,一个是只有满足条件时,该位的数值才发生更新。
279.完全平方数
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
初始思路:
由题意可知,这道题需要我们自己构建coins数组,如果这个数小于16,那么我们的数组就只需要装1,4,9,剩下的步骤同上一题一样,注意处理一些较少数目的特殊情况。
class Solution {public int numSquares(int amount) {if(amount<4){return amount;}int n = 0;for(int i = 0;i<amount;i++){if(i*i>amount){n=i-1;break;}}int[] coins = new int[n];for(int i = 0;i<coins.length;i++){coins[i] = (i+1)*(i+1);}int[] dp = new int[amount+1];dp[0] = 0;for(int i = 1;i<amount+1;i++){dp[i] = Integer.MAX_VALUE;}for(int i = 0;i<coins.length;i++){for(int j = coins[i];j<amount+1;j++){dp[j] = Math.min(dp[j],dp[j-coins[i]]+1);}}//System.out.println(Arrays.toString(dp));return dp[amount];}
}
题解复盘:
class Solution {// 版本一,先遍历物品, 再遍历背包public int numSquares(int n) {int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];//初始化for (int j = 0; j <= n; j++) {dp[j] = max;}//如果不想要寫for-loop填充數組的話,也可以用JAVA內建的Arrays.fill()函數。//Arrays.fill(dp, Integer.MAX_VALUE);//当和为0时,组合的个数为0dp[0] = 0;// 遍历物品for (int i = 1; i * i <= n; i++) {// 遍历背包for (int j = i * i; j <= n; j++) {//if (dp[j - i * i] != max) {dp[j] = Math.min(dp[j], dp[j - i * i] + 1);//}//不需要這個if statement,因爲在完全平方數這一題不會有"湊不成"的狀況發生( 一定可以用"1"來組成任何一個n),故comment掉這個if statement。}}return dp[n];}
}
一个完美的递推公式:dp[j] = Math.min(dp[j], dp[j - i * i] + 1)
相关文章:
D3839|完全背包
完全背包: 首先01背包的滚动数组中的解法是内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。 for(int i 0; i < weight.size(); i) { // 遍历物品for(int j bagWeight; j > weight[i]; j--) { // 遍历背包容量dp[j] max(dp[j], dp[j…...
Java之Synchronized与锁升级
Synchronized与锁升级 一、概述 在多线程并发编程中 synchronized 一直是元老级角色,很多人都会称呼它为重量级锁。但是,随着 Java SE 1.6 对 synchronized 进行了各种优化之后,有些情况下它就并不那么重了。 本文详细介绍 Java SE 1.6 中为…...
kitex出现:open conf/test/conf.yaml: no such file or directory
open conf/test/conf.yaml: no such file or directory https://github.com/cloudwego/cwgo/issues/120 https://github.com/cloudwego/cwgo/issues/29 在使用Kitex生成的代码中,单元测试时回报错,如标题所示。出现该错的原因是,biz/servic…...
sql server多表查询
查询目标 现在有学生表和学生选课信息表,stu和stuSelect,stu中包含学生用户名、名字,stuSelect表中包含学生用户名,所选课程名 学生表: nameusername李明Li Ming李华Li Hua 学生选课表: usernameCourse…...
如何利用PPT绘图并导出清晰图片
在写论文的过程中,免不了需要绘图,但是visio等软件绘图没有在ppt上绘图比较熟练,尤其流程图结构图. 但是ppt导出的图片也不够清晰,默认分辨率是96dpi,而杂志投稿一般要求至300dpi。解决办法如下: 1.打开注…...
1.倒排索引 2.逻辑斯提回归算法
1.倒排索引 https://help.aliyun.com/zh/open-search/retrieval-engine-edition/introduction-to-inverted-indexes 倒排索引(Inverted Index)是一种数据结构,用于快速查找包含某个特定词或词语的文档。它主要用于全文搜索引擎等应用&#…...
Kafka消费者组
消费者总体工作流程 Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的groupid相同。 • 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费…...
四. 基于环视Camera的BEV感知算法-BEVDepth
目录 前言0. 简述1. 算法动机&开创性思路2. 主体结构3. 损失函数4. 性能对比总结下载链接参考 前言 自动驾驶之心推出的《国内首个BVE感知全栈系列学习教程》,链接。记录下个人学习笔记,仅供自己参考 本次课程我们来学习下课程第四章——基于环视Cam…...
CentOS系统环境搭建(二十五)——使用docker compose安装mysql
centos系统环境搭建专栏🔗点击跳转 文章目录 使用docker compose安装mysqlMySQL81.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 MySQL5.71.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 使用docker comp…...
协作机器人(Collaborative-Robot)安全碰撞的速度与接触力
协作机器人(Collaborative-Robot)的安全碰撞速度和接触力是一个非常重要的安全指标。在设计和使用协作机器人时,必须确保其与人类或其他物体的碰撞不会对人员造成伤害。 对于协作机器人的安全碰撞速度,一般会设定一个上限值&…...
第11章 GUI Page400~402 步骤二 画直线
运行效果: 源代码: /**************************************************************** Name: wxMyPainterApp.h* Purpose: Defines Application Class* Author: yanzhenxi (3065598272qq.com)* Created: 2023-12-21* Copyright: yanzhen…...
华为gre隧道全部跑静态路由
最终实现: 1、pc1能用nat上网ping能pc3 2、pc1能通过gre访问pc2 3、全部用静态路由做,没有用ospf,如果要用ospf,那么两边除了路由器上跑ospf,核心交换机也得用ospf r2配置: acl number 3000 rule 5 deny…...
【c++】入门1
c关键字 命名空间 在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染ÿ…...
Python之Django项目的功能配置
1.创建Django项目 进入项目管理目录,比如:D盘 执行命令:diango-admin startproject demo1 创建项目 如果提示diango命令不存在,搜索diango-admin程序的位置,然后加入到环境变量path中。 进入项目,cd demo…...
P4 音频知识点——PCM音频原始数据
目录 前言 01 PCM音频原始数据 1.1 频率 1.2 振幅: 1.3 比特率 1.4 采样 1.5 量化 1.6 编码 02. PCM数据有以下重要的参数: 采样率: 采集深度 通道数 PCM比特率 PCM文件大小计算: …...
解决Electron中WebView加载部分HTTPS页面白屏的方法
Electron是一个开源的桌面应用程序框架,它允许使用Web技术构建跨平台的桌面应用。在Electron应用中,WebView 是一个常用的组件,用于嵌套加载Web内容。然而,有时候在加载使用 HTTPS 协议的页面时,可能会因为证书问题导致…...
【Java中创建对象的方式有哪些?】
✅Java中创建对象的方式有哪些? ✅使用New关键字✅使用反射机制✅使用clone方法✅使用反序列化✅使用方法句柄✅ 使用Unsafe分配内存 ✅使用New关键字 这是我们最常见的也是最简单的创建对象的方式,通过这种方式我们还可以调用任意的构造函数 (无参的和有…...
npm使用详解(好吧好吧是粗解)
目录 npm是什么? npm有什么用? npm安装 在 Windows 上 在 macOS 上 在 Linux 上(使用 apt 包管理器为例) 验证 npm 安装成功: npm使用 1. 初始化项目: 2. 安装和管理依赖: 3. 查看和…...
uniapp自定义头部导航怎么实现?
一、在pages.json文件里边写上自定义属性 "navigationStyle": "custom" 二、在对应的index页面写上以下: <view :style"{ height: headheight px, backgroundColor: #24B7FF, zIndex: 99, position: fixed, top: 0px, width: 100% …...
什么是 Dubbo?它有哪些核心功能?
文章目录 什么是 Dubbo?它有哪些核心功能? 什么是 Dubbo?它有哪些核心功能? Dubbo 是一款高性能、轻量级的开源 RPC 框架。由 10 层模式构成,整个分层依赖由上至下。 通过这张图我们也可以将 Dubbo 理解为三层模式&…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
