当前位置: 首页 > news >正文

YOLOv8改进 | 主干篇 | 利用SENetV2改进网络结构 (全网首发改进)

一、本文介绍

本文给大家带来的改进机制是SENetV2,其是2023.11月的最新机制(所以大家想要发论文的可以在上面下点功夫),其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型,而是一个可以和现有的任何一个模型相结合的模块(可以看作是一种通道型的注意力机制但是相对于SENetV1来说V2又在全局的角度进行了考虑)。在SENet中,所谓的挤压和激励(Squeeze-and-Excitation)操作是作为一个单元添加到传统的卷积网络结构中,如残差单元中(后面我会把修改好的残差单元给大家大家直接复制粘贴即可使用)亲测大中小三中目标检测上都有一定程度的涨点效果。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

后面我会将这个机制SENetV1和SENetV2添加到多个网络结构中进行融合涨点,同时将其融合到检测头里将模型发布给大家使用。

(我对于SENetV1和SENetV2各提供了两个版本的yaml文件,我分别尝试了其中的两种,这个SENetV2的实验yaml文件可能不如我没实验的yaml文件二大家可以都尝试一下。)

目录

一、本文介绍

 二、SENetV2框架原理

三、SENetV2核心代码

四、手把手教你添加SENetV2模块

 4.1 SENetV2添加步骤

4.1.1 步骤一

4.1.2 步骤二

4.1.3 步骤三

4.2 SENetV2的yaml文件和训练截图

4.2.1 SENetV2的yaml版本一

4.2.2 SENetV2的yaml版本二

4.3 推荐SENetV2可添加的位置 

4.4 SENetV2的训练过程截图 

五、本文总结


 二、SENetV2框架原理

论文地址:官方论文地址点击即可跳转

代码地址:官方代码地址点击即可跳转


SENetV2介绍了一种改进的SENet架构,该架构通过引入一种称为Squeeze aggregated excitation(SaE)的新模块来提升网络的表征能力。这个模块结合了挤压和激励(SENetV1)操作,通过多分支全连接层增强了网络的全局表示学习。在基准数据集上的实验结果证明了SENetV2模型相较于现有模型在分类精度上的显著提升。这一架构尤其强调在仅略微增加模型参数的情况下,如何有效地提高模型的性能。 

挤压和激励模块大家可以看我发的SENetV1文章里面有介绍。

图中展示了三种不同的神经网络模块对比:

a) ResNeXt模块:采用多分支CNN结构,不同分支的特征图通过卷积操作处理后合并(concatenate),再进行额外的卷积操作。

b) SENet模块:标准卷积操作后,利用全局平均池化来挤压特征,然后通过两个尺寸为1x1的全连接层(FC)和Sigmoid激活函数来获取通道权重,最后对卷积特征进行缩放(Scale)。

c) SENetV2模块:结合了ResNeXt和SENet的特点,采用多分支全连接层(FC)来挤压和激励操作,最后进行特征缩放。

其中SENetV2的设计旨在通过多分支结构进一步提升特征表达的精细度和全局信息的整合能力。

前面我们提到了SaE,就是SENetV2相对于SENetV1的主要改进机制,下面的图片介绍了其内部工作原理。

SENet V2中所提出的SaE(Squeeze-and-Excitation)模块的内部工作机制。挤压输出后,被输入到多分支的全连接(FC)层,然后进行激励过程。分割的输入在最后被传递以恢复其原始形状。这种设计能够让网络更有效地学习到输入数据的不同特征,并且在进行特征转换时考虑到不同通道之间的相互依赖性。 


三、SENetV2核心代码

下面的代码是MSDA的核心代码,我们将其复制导'ultralytics/nn/modules'目录下,在其中创建一个文件,我这里起名为Dilation然后粘贴进去,其余使用方式看章节四。

import torch
import torch.nn as nn
from .conv import Conv
# 定义SE模块
class SELayer(nn.Module):def __init__(self, channel, reduction=16):super(SELayer, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)# 定义SaE模块
class SELayerV2(nn.Module):def __init__(self, in_channel, reduction=32):super(SELayerV2, self).__init__()assert in_channel>=reduction and in_channel%reduction==0,'invalid in_channel in SaElayer'self.reduction = reductionself.cardinality=4self.avg_pool = nn.AdaptiveAvgPool2d(1)#cardinality 1self.fc1 = nn.Sequential(nn.Linear(in_channel,in_channel//self.reduction, bias=False),nn.ReLU(inplace=True))# cardinality 2self.fc2 = nn.Sequential(nn.Linear(in_channel, in_channel // self.reduction, bias=False),nn.ReLU(inplace=True))# cardinality 3self.fc3 = nn.Sequential(nn.Linear(in_channel, in_channel // self.reduction, bias=False),nn.ReLU(inplace=True))# cardinality 4self.fc4 = nn.Sequential(nn.Linear(in_channel, in_channel // self.reduction, bias=False),nn.ReLU(inplace=True))self.fc = nn.Sequential(nn.Linear(in_channel//self.reduction*self.cardinality, in_channel, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y1 = self.fc1(y)y2 = self.fc2(y)y3 = self.fc3(y)y4 = self.fc4(y)y_concate = torch.cat([y1,y2,y3,y4],dim=1)y_ex_dim = self.fc(y_concate).view(b,c,1,1)return x * y_ex_dim.expand_as(x)class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.SEV2 = SELayerV2(c2)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.SEV2(self.cv2(self.cv1(x))) if self.add else self.SEV2(self.cv2(self.cv1(x)))class C2f_SENetV2(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,expansion."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))# import ipdb
#
# se_v2 = SaELayer(64)
# # 示例输入
# input = torch.randn(3, 64, 224, 224)
# output = se_v2(input)
#
# print(output.shape)#torch.Size([3, 64, 224, 224])


四、手把手教你添加SENetV2模块

 4.1 SENetV2添加步骤

4.1.1 步骤一

首先我们找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个py文件,名字为你也可以根据你自己的习惯起即可,然后将核心代码复制进去。

4.1.2 步骤二

之后我们找到'ultralytics/nn/tasks.py'文件,在其中注册我们的模块。

首先我们需要在文件的开头导入我们的模块,如下图所示->

4.1.3 步骤三

我们找到parse_model这个方法,可以用搜索也可以自己手动找,大概在六百多行吧。 我们找到如下的地方,然后将模块按照我的方法添加进去即可,模仿我添加即可,其中另外的模块,你没有删除即可,添加红框的内容即可。

到此我们就注册成功了,可以修改yaml文件使用我们添加的模块了。


4.2 SENetV2的yaml文件和训练截图

下面推荐几个版本的yaml文件给大家,大家可以复制进行训练,但是组合用很多具体那种最有效果都不一定,针对不同的数据集效果也不一样,我不可每一种都做实验,所以我下面推荐了几种我自己认为可能有效果的配合方式,你也可以自己进行组合。


4.2.1 SENetV2的yaml版本一

这个是我尝试的版本,和上一篇SENetV1做了个对比反过来尝试一下。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f_SENetV2, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f_SENetV2, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f_SENetV2, [1024]]  # 21 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.2.2 SENetV2的yaml版本二

下面的版本我在大中小三个检测层的输出部分添加了SENetV2,大家可以根据自己的需求,减少SENetV2比如你做的小目标检测,那么可以把另外两个去去掉,但是别忘了修改检测通道数,要不然会报错。 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, SELayerV2, []]  # 16- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 19 (P4/16-medium)- [-1, 1, SELayerV2, []]  # 20- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 23 (P5/32-large)- [-1, 1, SELayerV2, []]  # 24- [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 推荐SENetV2可添加的位置 

SENetV2是一种即插即用的可替换卷积的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入SENetV2

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加SENetV2可以帮助模型更有效地融合不同层次的特征。

  3. 能添加的位置很多:一篇文章很难全部介绍到,后期我会发文件里面集成上百种的改进机制,然后还有许多融合模块,给大家。


4.4 SENetV2的训练过程截图 

下面是添加了SENetV2的训练截图。

大家可以看下面的运行结果和添加的位置所以不存在我发的代码不全或者运行不了的问题大家有问题也可以在评论区评论我看到都会为大家解答(我知道的)。

​​​​​​


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

​​​

相关文章:

YOLOv8改进 | 主干篇 | 利用SENetV2改进网络结构 (全网首发改进)

一、本文介绍 本文给大家带来的改进机制是SENetV2,其是2023.11月的最新机制(所以大家想要发论文的可以在上面下点功夫),其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型,而是一个可以和现有的任何…...

TUP实现一对一聊天

package TCP; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.Scanner; /** * 发送消息线程 */ class Send ext…...

Kafka设计原理详解

Kafka核心总控制器 (Controller) 在Kafka集群中,通常会有一个或多个broker,其中一个会被选举为控制器 (Kafka Controller),其主要职责是管理整个集群中所有分区和副本的状态。具体来说: 当某个分区的leader副本出现故障时&#…...

光耦继电器

光耦继电器(光电继电器) AQW282SX 282SZ 280SX 280SZ 284SX 284SZ 212S 212SX 21 2SZ 文章目录 光耦继电器(光电继电器)前言一、光耦继电器是什么二、光耦继电器的类型三、光电耦合器的应用总结前言 光耦继电器在工业控制、通讯、医疗设备、家电及汽车电子等领域得到广泛应…...

【C++练级之路】【Lv.5】动态内存管理(都2023年了,不会有人还不知道new吧?)

目录 一、C/C内存分布二、new和delete的使用方式2.1 C语言内存管理2.2 C内存管理2.2.1 new和delete操作内置类型2.2.2 new和delete操作自定义类型 三、new和delete的底层原理3.1 operator new与operator delete函数3.2 原理总结3.2.1 内置类型3.2.2 自定义类型 四、定位new表达…...

2016年第五届数学建模国际赛小美赛A题臭氧消耗预测解题全过程文档及程序

2016年第五届数学建模国际赛小美赛 A题 臭氧消耗预测 原题再现: 臭氧消耗包括自1970年代后期以来观察到的若干现象:地球平流层(臭氧层)臭氧总量稳步下降,以及地球极地附近平流层臭氧(称为臭氧空洞&#x…...

springMVC-与spring整合

一、基本介绍 在项目开发中,spring管理的 Service和 Respository,SrpingMVC管理 Controller和ControllerAdvice,分工明确 当我们同时配置application.xml, springDispatcherServlet-servlet.xml , 那么注解的对象会被创建两次, 故…...

【二叉树】【单调双向队列】LeetCode239:滑动窗口最大值

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 涉及知识点 单调双向队列 二叉树 题目 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动…...

如何使用树莓派Bookworm系统中配置网络的新方法NetworkManager

树莓派在 10 月新出的 Bookworm 版本系统中,将使用多年的 dhcpcd 换成了 NetworkManager(以前是在rasp-config中可选),这是因为 Raspberry Pi OS 使用的是 Debian 内核(和 Ubuntu 一样),所以树莓…...

恶意软件分析沙箱在网络安全策略中处于什么位置?

恶意软件分析沙箱提供了一种全面的恶意软件分析方法,包括静态和动态技术。这种全面的评估可以更全面地了解恶意软件的功能和潜在影响。然而,许多组织在确定在其安全基础设施中实施沙箱的最有效方法方面面临挑战。让我们看一下可以有效利用沙盒解决方案的…...

ARM学习(24)Can的高阶认识和错误处理

笔者来聊一下CAN协议帧的认识和错误处理。 1、CAN协议帧认识 CAN 差分信号,是经过CAN收发器转成差分信号的,CAN RX和TX是逻辑电平。CAN的基础知识,可参考笔者这边文章:ARM学习(21)STM32 外设Can的认识与驱…...

网络通信--深入理解网络和TCP / IP协议

计算机网络体系结构 TCP/IP协议族 TCP / IP 网络传输中的数据术语 网络通信中的地址和端口 window端查看IP地址和MAC地址:ipconfig -all MAC层地址是在数据链路层的;IP工作在网络层的 MAC是48个字节,IP是32个字节 在子网(局域…...

IPC之九:使用UNIX Domain Socket进行进程间通信的实例

socket 编程是一种用于网络通信的编程方式,在 socket 的协议族中除了常用的 AF_INET、AF_RAW、AF_NETLINK等以外,还有一个专门用于 IPC 的协议族 AF_UNIX,IPC 是 Linux 编程中一个重要的概念,常用的 IPC 方式有管道、消息队列、共…...

学习在UE中通过Omniverse实现对USD文件的Live-Sync(实时同步编辑)

目标 前一篇 学习了Omniverse的一些基础概念。本篇在了解这些概念的基础上,我想体验下Omniverse的一些具体的能力,特别是 Live-Sync (实时同步) 相关的能力。 本篇实践了使用Omniverse的力量在UE中建立USD文件的 Live-Sync 编辑。由于相关的知识我是从…...

实现打印一个数字金字塔。例如:输入5,图形如下图所示

1*12**123***1234**** 12345*****#include<stdio.h> void main() {int i,j,l,n,k;scanf("%d",&n);/**********Program**********//********** End **********/ } 当我们拿到这个题目的时候可以看见题目给了我们五个变量&#xff0c;其中n是我们输入的数…...

hive sql常用函数

目录 一、数据类型 二、基础运算 三、字符串函数 1、字符串长度函数: length() 2、字符串反转函数&#xff1a;reverse 3、字符串连接函数 4、字符串截取函数 5、字符串分割函数&#xff1a;split 6、字符串查找函数 7、ascii 8、base64 9、character_length 10、c…...

Spark系列之:使用spark合并hive数据库多个分区的数据到一个分区中

Spark系列之&#xff1a;使用spark合并hive数据库多个分区的数据到一个分区中 把两个分区的数据合并到同一个分区下把其中一个分区的数据通过append方式添加到另一个分区即可 %spark val df spark.sql("select * from optics_prod.product_1h_a where datetime202311142…...

《重构-改善既有代

重要列表 1、如果你发现自己需要为程序添加一个特性&#xff0c;而代码结构使你无法很方便地达成目的&#xff0c;那就先重构哪个程序&#xff0c;使特性的添加比较容易的进行&#xff0c;然后再添加特性 2、重构前&#xff0c;先检查自己是否有一套可靠的测试机制&#xff0…...

vue3(七)-基础入门之事件总线与动态组件

一、事件总线 事件总线使用场景&#xff1a; 两个兄弟组件之间的传参&#xff0c;或者两个没有关联的组件之间的传参 html &#xff1a;引入 publicmsg 与 acceptmsg 自定义组件 (自定义组件名称必须小写) <body><div id"app"><publicmsg></…...

【计算机网络】网络层——IP协议

目录 一. 基本概念 二. 协议报文格式 三. 网段划分 1. 第一次划分 2. CIDR方案 3. 特殊的IP地址 四. IP地址不足 1. 私有IP和公网IP 2. DHCP协议 3. 路由器 4. NAT技术 内网穿透(NAT穿透) 五. 路由转发 路由表生成算法 结束语 一. 基本概念 IP指网络互连协议…...

《钢结构设计标准》中抗震性能化设计的概念

文章目录 0. 背景1. 前言2. 什么是抗震性能化设计3. 我国规范是如何实现性能化设计的4. 从能量角度理解性能化设计05. 《钢结构设计标准》抗震性能化设计的思路06. 《钢结构设计标准》抗震性能化设计的步骤 0. 背景 关于抗震性能化设计&#xff0c;之前一直理解的很模糊&#…...

【算法】【动规】回文串系列问题

文章目录 跳转汇总链接3.1 回文子串3.2 最长回文子串3.3 分割回文串 IV3.4 分割回文串II(hard) 跳转汇总链接 &#x1f449;&#x1f517;动态规划算法汇总链接 3.1 回文子串 &#x1f517;题目链接 给定一个字符串 s &#xff0c;请计算这个字符串中有多少个回文子字符串。 …...

4-Docker命令之docker logs

1.docker logs介绍 docker logs命令是用来获取docker容器的日志 2.docker logs用法 docker logs [参数] CONTAINER [root@centos79 ~]# docker logs --helpUsage: docker logs [OPTIONS] CONTAINERFetch the logs of a containerAliases:docker container logs, docker lo…...

svelte基础语法学习

官网文档地址&#xff1a;绑定 / Each 块绑定 • Svelte 教程 | Svelte 中文网 1、样式 一般情况下父子组件内样式隔离、同级组件间样式隔离 2、页面布局 <style>P{color: red;} </stye><script> // 类似data let name ‘jiang’ let countVal 0 let s…...

Node.js教程-mysql模块

概述 在Node.js中&#xff0c;mysql模块是实现MySQL协议的JavaScript客户端工具。Node.js程序通过与MySQL建立链接&#xff0c;然后可对数据进行增、删、改、查等操作。 安装 由于mysql模块不是Node.js内置模块&#xff0c;需手动安装 npm i mysql注意&#xff1a;若MySQL服…...

网络通信协议

WebSocket通信 WebSocket是一种基于TCP的网络通信协议&#xff0c;提供了浏览器和服务器之间的全双工通信&#xff08;full-duplex&#xff09;能力。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直接可以创建持久性的连接&#xff…...

Spark集群部署与架构

在大数据时代&#xff0c;处理海量数据需要分布式计算框架。Apache Spark作为一种强大的大数据处理工具&#xff0c;可以在集群中高效运行&#xff0c;处理数十TB甚至PB级别的数据。本文将介绍如何构建和管理Spark集群&#xff0c;以满足大规模数据处理的需求。 Spark集群架构…...

DshanMCU-R128s2 SDK 架构与目录结构

R128 S2 是全志提供的一款 M33(ARM)C906(RISCV-64)HIFI5(Xtensa) 三核异构 SoC&#xff0c;同时芯片内部 SIP 有 1M SRAM、8M LSPSRAM、8M HSPSRAM 以及 16M NORFLASH。 本文档作为 R128 FreeRTOS SDK 开发指南&#xff0c;旨在帮助软件开发工程师、技术支持工程师快速上手&am…...

【5G PHY】NR参考信号功率和小区总传输功率的计算

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…...

k8s学习 — 各知识点快捷入口

k8s学习 — 各知识点快捷入口 k8s学习 — 第一章 核心概念 k8s学习 — 第一章 核心概念 命名空间 实践&#xff1a; k8s学习 — &#xff08;实践&#xff09;第二章 搭建k8s集群k8s学习 — &#xff08;实践&#xff09;第三章 深入Podk8s学习 — &#xff08;实践&#xff0…...