当前位置: 首页 > news >正文

多维时序 | MATLAB实CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测

目录

    • 多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

4

6
7
8
9

基本介绍

多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测。

模型描述

多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

多维时序 | MATLAB实CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测预测效果基本介…...

vs快捷键

ctrlMo 折叠代码块 ctrlML 打开代码块...

linux 内核时间计量方法

定时器中断由系统定时硬件以规律地间隔产生; 这个间隔在启动时由内核根据 HZ 值来编 程, HZ 是一个体系依赖的值, 在 <linux/param.h>中定义或者它所包含的一个子平台文 件中. 在发布的内核源码中的缺省值在真实硬件上从 50 到 1200 嘀哒每秒, 在软件模拟 器中往下到 24.…...

循环神经网络中的梯度消失或梯度爆炸问题产生原因分析(二)

上一篇中讨论了一般性的原则&#xff0c;这里我们具体讨论通过时间反向传播&#xff08;backpropagation through time&#xff0c;BPTT&#xff09;的细节。我们将展示目标函数对于所有模型参数的梯度计算方法。 出于简单的目的&#xff0c;我们以一个没有偏置参数的循环神经…...

JWT signature does not match locally computed signature

1. 问题背景 最近在协助团队小盆友调试一个验签问题&#xff0c;结果还“节外生枝”了&#xff0c;原来不是签名过程的问题&#xff0c;是token的问题。 当你看到“JWT signature does not match locally computed signature. JWT validity cannot be asserted and should not…...

vitepress项目使用github的action自动部署到github-pages中,理论上可以通用所有

使用github的action自动部署到github-pages中 创建部署的deploy.yml文件&#xff0c;在项目的根目录下面 .github\workflows\deploy.yml 完整的代码&#xff1a;使用的是pnpm进行依赖安装。 name: 部署VitePresson:push:branches:- docs # 这段是在推送到 docs 分支时触发该…...

Python爬虫---解析---JSONPath

Xpath可以解析本地文件和服务器响应的文件&#xff0c;JSONPath只能解析本地文件 1. 安装jsonpath&#xff1a;pip install jsonpath 注意&#xff1a;需要安装在python解释器相同的位置,例如&#xff1a;D:\Program Files\Python3.11.4\Scripts 2. 使用步骤 2.1 导入&…...

路由器介绍和命令操作

先来回顾一下上次的内容&#xff1a; ip地址就是由32位二进制数组 二进位数就是只有数字0和1组成 网络位&#xff1a;类似于区号&#xff0c;表示区域作用 主机位&#xff1a;类似于号码&#xff0c;表示区域中编号 网络名称&#xff1a;网络位不变&#xff0c;主机位全为0 …...

Hadoop——分布式计算

一、分布式计算概述 1. 什么是计算、分布式计算? 计算:对数据进行处理,使用统计分析等手段得到需要的结果分布式计算:多台服务器协同工作,共同完成一个计算任务2. 分布式计算常见的2种工作模式分散->汇总 (MapReduce就是这种模式)将数据分片,多台服务器各自负责一…...

LaTeX引用参考文献 | Texstudio引用参考文献

图片版教程&#xff1a; 文字版教程&#xff1a; ref.bib里面写参考的文献&#xff0c;ref.bib和document.tex要挨着放&#xff0c;同一个目录里面. 解析一下bib文件格式&#xff1a;aboyeji2023effect是引用文献的关键字&#xff0c;需要在正文document.tex里面使用\cite指令…...

如何在Go中使用模板

引言 您是否需要以格式良好的输出、文本报告或HTML页面呈现一些数据?你可以使用Go模板来做到这一点。任何Go程序都可以使用text/template或html/template包(两者都包含在Go标准库中)来整齐地显示数据。 这两个包都允许你编写文本模板并将数据传递给它们,以按你喜欢的格式呈…...

云原生之深入解析基于FunctionGraph在Serverless领域的FinOps的探索和实践

一、背景 Serverless 精确到毫秒级的按用付费模式使得用户不再需要为资源的空闲时间付费。然而&#xff0c;对于给定的某个应用函数&#xff0c;由于影响其计费成本的因素并不唯一&#xff0c;使得用户对函数运行期间的总计费进行精确的事先估计变成了一项困难的工作。以传统云…...

电子电器架构(E/E)演化 —— 主流主机厂域集中架构概述

电子电器架构(E/E)演化 —— 主流主机厂域集中架构概述 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。…...

Python常用的几个函数

print()函数&#xff1a;用于打印输出信息到控制台。 input()函数&#xff1a;用于从控制台获取用户输入。 len()函数&#xff1a;用于获取字符串、列表、元组、字典等对象的长度。 range()函数&#xff1a;用于生成一个整数序列&#xff0c;常用于循环中。 type()函数&…...

【Linux系统基础】(2)在Linux上部署MySQL、RabbitMQ、ElasticSearch等各类软件

实战章节&#xff1a;在Linux上部署各类软件 前言 为什么学习各类软件在Linux上的部署 在前面&#xff0c;我们学习了许多的Linux命令和高级技巧&#xff0c;这些知识点比较零散&#xff0c;同学们跟随着课程的内容进行练习虽然可以基础掌握这些命令和技巧的使用&#xff0c;…...

HarmonyOS4.0系统性深入开发01应用模型的构成要素

应用模型的构成要素 应用模型是HarmonyOS为开发者提供的应用程序所需能力的抽象提炼&#xff0c;它提供了应用程序必备的组件和运行机制。有了应用模型&#xff0c;开发者可以基于一套统一的模型进行应用开发&#xff0c;使应用开发更简单、高效。 HarmonyOS应用模型的构成要…...

线下终端门店调研包含哪些内容

品牌渠道一般分为线上和线下&#xff0c;线上的价格、促销信息、店铺优惠机制等都可以通过登录查看&#xff0c;但是线下门店的数据则需要进店巡查&#xff0c;否则无法得到真实的店铺销售数据&#xff0c;当然也有品牌是靠线下的业务团队报备机制获得这些信息&#xff0c;但是…...

倾斜摄影三维模型数据在行业应用分析

倾斜摄影三维模型数据在行业应用分析 倾斜摄影三维模型数据是一种重要的地理信息资源&#xff0c;可以广泛应用于各个行业和场景&#xff0c;以解决不同领域的问题。以下将详细探讨几个典型的行业或场景&#xff0c;它们利用倾斜摄影三维模型数据解决问题的应用。 1、地理测绘…...

Apache Flink 进阶教程(七):网络流控及反压剖析

目录 前言 网络流控的概念与背景 为什么需要网络流控 网络流控的实现&#xff1a;静态限速 网络流控的实现&#xff1a;动态反馈/自动反压 案例一&#xff1a;Storm 反压实现 案例二&#xff1a;Spark Streaming 反压实现 疑问&#xff1a;为什么 Flink&#xff08;bef…...

k8s学习 — (DevOps实践)第十三章 DevOps 环境搭建

k8s学习 — &#xff08;DevOps实践&#xff09;第十三章 DevOps 环境搭建 学习资料1 Gitlab1.1 安装 Gitlab1.2 页面配置1.3 配置 Secret1.4 为项目配置 Webhook1.5 卸载 2 Harbor2.1 安装 Harbor2.1 配置 Secret 3 SonarQube3.1 安装 SonarQube3.2 生成服务 token3.3 创建 We…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...