nn.LSTM个人记录
简介
nn.LSTM参数
torch.nn.lstm(input_size, "输入的嵌入向量维度,例如每个单词用50维向量表示,input_size就是50"hidden_size, "隐藏层节点数量,也是输出的嵌入向量维度"num_layers, "lstm 隐层的层数,默认为1"bias, "隐层是否带 bias,默认为 true"batch_first, "True 或者 False,如果是 True,则 input 为(batchsize, len, input_size),默认值为:False(len, batchsize, input_size)"dropout, "除最后一层,每一层的输出都进行dropout,默认值0"bidirectional "如果设置为 True, 则表示双向 LSTM,默认为 False")
维度
batch_first=True,输入维度(batchsize,len,input_size)
batch_first=False,输入维度(len,batchsize, input_size)
batch_first=False,输出维度(len,batchsize,hidden_size)
举例嵌入向量维度为1
假如输入x为(batchsize,len)的序列,即嵌入向量维度为1,进行一个回归预测。
如果将嵌入向量维度维度设为1就不太合理,因为如果len非常长例如几w,那么经过几w的时间步得到的得到的h维度为(batchsize,1),序列太长丢失很多信息,再输入全连接层预测效果不好。并且lstm实际上将嵌入向量维度从input_size规约到hidden_size。
所以在这里我们将len作为input_size,嵌入向量维度1作为len(即对调了一下)
添加一个维度:
x = x.unsqueeze(0)
x维度变为(1,batchsize,len),相当于设置数据的长度为1,嵌入向量维度为len,通过nn.LSTM输入到网络中。
#lstm为定义的网络
#h[-1]为最后输入到全连接层的嵌入矩阵 但是由于此问题中len为1,所以x等于h[-1]
x, (h, c) = lstm(x)
x维度变为(1,batchsize,hidden_size)
h为每层lstm最后一个时间步的输出(一般可以输入到后续的全连接层),维度为(num_layers,batchsize,hidden_size)
c为最后一个时间步 LSTM cell 的状态(记忆单元,一般用不到),维度为(num_layers,batchsize,hidden_size)
移除张量中所有尺寸为 1 的维度,即将第一个维度移除掉:
lstm_out = x.squeeze(0)
x维度变为(batchsize,hidden_size) ,输入到全连接层(线性层,维度(hidden_size,num_class))中,最终输出维度(batchsize,num_class)
参考:
Pytorch — LSTM (nn.LSTM & nn.LSTMCell)-CSDN博客
相关文章:

nn.LSTM个人记录
简介 nn.LSTM参数 torch.nn.lstm(input_size, "输入的嵌入向量维度,例如每个单词用50维向量表示,input_size就是50"hidden_size, "隐藏层节点数量,也是输出的嵌入向量维度"num_layers, "lstm 隐层的层数,默认…...

vr虚拟高压电器三维仿真展示更立体全面
VR工业虚拟仿真软件的应用价值主要体现在以下几个方面: 降低成本:通过VR技术进行产品设计和开发,可以在虚拟环境中进行,从而减少对物理样机的依赖,降低试错成本和时间。此外,利用VR技术构建的模拟场景使用方…...
轮廓平滑方法
目录 1. 形态学操作 2. 边缘平滑化 3. 轮廓近似 python 有回归线平滑 2D 轮廓 1. 形态学操作 利用形态学操作(例如腐蚀、膨胀、开运算、闭运算等)可以使分割边界更加平滑和连续。腐蚀可以消除小的不连续区域,膨胀可以填充空洞࿰…...

十大VSCODE 插件推荐2023
1、海鲸AI 插件链接:ChatGPT GPT-4 - 海鲸AI - Visual Studio Marketplace 包含了ChatGPT(3.5/4.0)等多个AI模型。可以实现代码优化,代码解读,代码bug修复等功能,反应迅捷,体验出色,是一个多功能的AI插件…...

HBase 集群搭建
文章目录 安装前准备兼容性官方网址 集群搭建搭建 Hadoop 集群搭建 Zookeeper 集群解压缩安装配置文件高可用配置分发 HBase 文件 服务的启停启动顺序停止顺序 验证进程查看 Web 端页面 安装前准备 兼容性 1)与 Zookeeper 的兼容性问题,越新越好&#…...

大三了,C++还算可以从事什么岗位比较好?
大三了,C还算可以从事什么岗位比较好? 在开始前我有一些资料,是我根据自己从业十年经验,熬夜搞了几个通宵,精心整理了一份「c的资料从专业入门到高级教程工具包」,点个关注,全部无偿共享给大家…...
java 贪吃蛇游戏
前言 此实现较为简陋,如有错误请指正。 其次代码中的图片需要自行添加地址并修改。 主类 public class Main { public static void main(String[] args) { new myGame(); } } 1 2 3 4 5 游戏类 import javax.swing.*; import java.awt.eve…...

聊聊Java算法的时间复杂度
参考 o(1), o(n), o(logn), o(nlogn)_o(1)-CSDN博客算法时间复杂度的表示法O(n)、O(n)、O(1)、O(nlogn)等是什么意思?-CSDN博客 在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它…...
hive中array相关函数总结
目录 hive官方函数解释示例实战 hive官方函数解释 hive官网函数大全地址: hive官网函数大全地址 Return TypeNameDescriptionarrayarray(value1, value2, …)Creates an array with the given elements.booleanarray_contains(Array, value)Returns TRUE if the a…...

年终盘点文生图的狂飙之路,2023年文生图卷到什么程度了?
目录 前言发展1月2月3月4月5月6月7月9月10月11月12月 思考与总结参考文献 前言 说到文生图,可能有些人不清楚,但要说AI绘画,就有很多人直呼: 2022可以说是AI绘图大爆发的元年。 AI绘画模型可以分为扩散模型(Diffusio…...

C++:list增删查改模拟实现
C:list增删查改模拟实现 前言一、list底层双链表验证、节点构造1.1 list底层数据结构1. 2 节点构造 二、迭代器封装实现(重点、难点)2.1 前置说明2.2 迭代器实现 三、list实现3.1 基本框架3.2 迭代器和const迭代器3.2 构造函数、析构函数、拷贝构造、赋值…...

基于阿里云服务网格流量泳道的全链路流量管理(二):宽松模式流量泳道
作者:尹航 在前文基于阿里云服务网格流量泳道的全链路流量管理(一):严格模式流量泳道中,我们介绍了使用服务网格 ASM 的严格模式流量泳道进行全链路灰度管理的使用场景。该模式对于应用程序无任何要求,只需…...

ubuntu 18.04 共享屏幕
用于windows远程ubuntu 1. sudo apt install xrdp 2. 配置 sudo vim /etc/xrdp/startwm.sh 把最下面的test和exec两行注释掉,添加一行 gnome-session 3.安装dconf-editor : sudo apt-get install dconf-editor 关闭require encrytion org->gnome->desktop…...

第十三节TypeScript 元组
1、简介 我们知道数组中元素的数据类型一般都是相同的(any[]类型的数组可以不同),如果存储的元素类型不同,则需要使用元组。 元组中允许存储不同类型的元素,元组可以作为参数传递给函数。2、创建元组的语法格式&#x…...

基于Java (spring-boot)的仓库管理系统
一、项目介绍 本系统的使用者一共有系统管理员、仓库管理员和普通用户这3种角色: 1.系统管理员:通过登录系统后,可以进行管理员和用户信息的管理、仓库和物品分类的管理,以及操作日志的查询,具有全面的系统管理权限。 2.仓库管理…...
SQL面试题挑战06:互相关注的人
目录 问题:SQL解答: 问题: 现在有一张relation表,里面只有两个字段:from_user和to_user,代表关注关系从from指向to,即from_user关注了to_user。现在要找出互相关注的所有人。 from_user to_…...
LSTM和GRU的区别
LSTM(Long Short-Term Memory)和GRU(Gated Recurrent Unit)都是循环神经网络(RNN)的变体,旨在解决传统RNN中的梯度消失和梯度爆炸的问题,使网络能够更好地处理长期依赖关系。 以下是…...

算法基础之数字三角形
数字三角形 核心思想:线性dp 集合的定义为 f[i][j] –> 到i j点的最大距离 从下往上传值 父节点f[i][j] max(f[i1][j] , f[i1][j1]) w[i][j] 初始化最后一层 f w #include <bits/stdc.h>using namespace std;const int N 510;int w[N][N],f[N][…...
蓝桥杯宝藏排序题目算法(冒泡、选择、插入)
冒泡排序: def bubble_sort(li): # 函数方式for i in range(len(li)-1):exchangeFalsefor j in range(len(li)-i-1):if li[j]>li[j1]:li[j],li[j1]li[j1],li[j]exchangeTrueif not exchange:return 选择排序: 从左往右找到最小的元素,放在起始位置…...

如何使用Docker部署Dashy并无公网ip远程访问管理界面
文章目录 简介1. 安装Dashy2. 安装cpolar3.配置公网访问地址4. 固定域名访问 简介 Dashy 是一个开源的自托管的导航页配置服务,具有易于使用的可视化编辑器、状态检查、小工具和主题等功能。你可以将自己常用的一些网站聚合起来放在一起,形成自己的导航…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...

在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...
CppCon 2015 学习:REFLECTION TECHNIQUES IN C++
关于 Reflection(反射) 这个概念,总结一下: Reflection(反射)是什么? 反射是对类型的自我检查能力(Introspection) 可以查看类的成员变量、成员函数等信息。反射允许枚…...
StarRocks 全面向量化执行引擎深度解析
StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计,相比传统行式处理引擎(如MySQL),性能可提升 5-10倍。以下是分层拆解: 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...
深入解析 ReentrantLock:原理、公平锁与非公平锁的较量
ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...