【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇

文章目录
- 📝前言
- 🌠什么是位段?
- 🌉 位段的内存分配
- 🌉VS怎么开辟位段空间呢?
- 🌉位段的跨平台问题
- 🌠 位段的应⽤
- 🌠位段使⽤的注意事项
- 🚩总结
📝前言
本小节,我们将学习结构体最后的知识:结构体实现位段,阿森将会和你一起去学习什么是位段?位段的内存分配,VS怎么开辟位段空间呢?位段跨平台问题,随即位段的应用,最后我们也要了解它的注意事项。文章干货满满,很容易理解,学习起来吧!😊
🌠什么是位段?
位段是C语言中结构体的一种数据类型。
位段允许在结构体中定义具有指定位数的成员,这些成员可以占用结构体变量内部的连续比特位。
位段的声明和结构是类似的,有两个不同:
-
位段的成员必须是
int,usigned int或signed int,在C99中位段成员的类型也可以选择其他类型。 -
位段的成员后边有一个冒号和一个数字,这个数字代表了该成员变量在结构体内占用的bit位数。它用来限定成员变量的范围和存储空间。。
话不多说,给铁铁上两者比较代码:
struct A//位段
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
struct B//结构体
{int _a ;int _b ;int _c ;int _d ;
};int main()
{printf("位段A大小=%d\n", sizeof(struct A));printf("结构体B大小=%d\n", sizeof(struct B));return 0;
}
输出:

分析:

首先看位段Struct A有4个成员,如int _a:2这个成员中,int是类型,_a是变量名【变量名包含字母(大小写均可),数字(但不能以数字开头),下划线,如良好的变量名userName,order_calculateResult】,:2指定该位段成员占用的bit位数为2个bit,以此类推就会明白_b,_c,_d的组成情况。既然知道了他的组成,那计算他的大小吧,Struct A的大小和为47bit(2+5+10+30=47bit),然后用编译器运行大小为8(这个8意思是八个字节,也等于8*8=64个比特位)。我们通过位段的一个成员一个成员加起来是47bit,而编译器计算出的是8个字节。
阿森小问:这
8个字节是内存实际占用的吗?为什么编译器不显示47个bit,而是64个bit,是不是跟结构体一样存在内存对齐呢?通过内存对齐来此应对内存的节约呢?阿森小答:没错,节省空间是没错,用的是也是同结构体一样的内存对齐的实现方式:字节对齐,不过方法不同。对于编译器来说,最小的内存单元是字节,它不会返回非整字节的bit数,因此它是按字节为单位返回,打印8个字节。位段成员总和47bit,6字节(48bit)就可以了,怎么又要8(64bit)个字节了。通过结构体(128bit)与位段(64bit)对比,我们看出他的空间节省出来了,但是他不是无限制的节省空间,虽然节省了空间,但也有浪费,阿森一会讲解怎么浪费空间的。当然对于位段是要使用在特殊场景下,如在struct B中的int _a;假设他存储134,267这么大的整数那就不适合用位段,如果要存储0,1,2,3用2bit就可以完美的存储起来了。 0可以用00,1用01,2用10,3用11表示,而用int 存储可能需要32bit,节省了很多空间!那位段怎么实现内存分配,让47(bit)变成8(64bit)字节呢?
🌉 位段的内存分配
- 位段的成员可以是
int,unsigned int,signed int或者是char等类型。 - 位段的空间上是按照需要以
4个字节(int)或者1个字节(char)的⽅式来开辟的。 - 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
用代码理解:
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
阿森把宝图解分析:

首先_a的类型是int ,申请了4个字节,开辟32bit空间,_a需要2bit,到底是从右边开始使用,还是从左边使用这两个空间开始的,这个是不确定的,标准C语言并没有给规定,这取决于编译器,注:这不是大小端问题。假设它从右向左,分配2个空间给_a(绿色),然后再继续分配5个空间给_b(黄色),接着_c(蓝色)说我需要10bit,最后还剩下 15bit,接下来_d说我需要30个bit,15个bit不够,内存说:那就再给你开辟一个整形32个bit吧!然后他就存储完剩下的15bit,再存储新开辟的32bit里分配15bit继续存储,这是一种方式!当然也有第二种可能:剩下的我浪费掉,我不用,反正不够,那我在新开辟的空间里一些性存储完30个bit,这是不是一种方式。对于这个剩下的15个bit会不会使用,C语言有没有给规定,这也取决于编译器,VS是一种实现,gcc是一种实现,这就说明了位段有很多不确定因素,位段是不跨平台的,位段是如何开辟空间的,是严格依赖编译器的!注重可以植平台应该避免使用位段,如果要使用,应该明白其开辟空间原理,避免造成不必要的麻烦!
🌉VS怎么开辟位段空间呢?
上代码来一起实战理解:
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};int main()
{struct S s = { 0 };s.a = 10;s.b = 8;s.c = 3;s.d = 4;printf("%d\n", sizeof(s));return 0;
}
代码运行:

阿森双手把宝图奉上:

图解分析:
首先一上来给s的成员都初始化为0,也就是每个bit都初始化为0,s里的每个成员类型都是char,为了更好的理解他开辟的空间是什么样的?我们先开辟一个字节(8bit(两个黑色箭头处在同一字节处)),开辟好了,a占3个bit,是从2个黑色箭头往左使用,还是从开头往右使用的呢?剩余的空间不够了,是浪费,还是不浪费呢?这样子吧!我们先假设一种方案来:1. 从右向左使用,2.如果剩余的空间不够就直接使用下一个空间,浪费掉。
开始–>:先看两个箭头指向一个字节处,
a是10,用二进制位表示01010(注:在x86环境下,整数10二进制表示方式为0000 1010,这里为了方便看,简写5为就能理解了),a要3bit,并没有把a全部存进去,从a取低位开始010,接着箭头移动三格,然后b要4bit,取1100,放进去,此时8bit只剩下1bit,根据我们定下的规则,如果剩余的空间不够,就浪费,使用下一个。好!接下来再开辟一个字节(8bit),黑色箭头指向下一个字节最右边,c你要5个bit,好!一下子满足你,此时发现8bit只剩下3bit了又不够,好!编译器说:再给你在内存空间里弄一个字节(8bit)吧,d要4bit,最后用了4bit,都存完了,总共3个字节。你可能说:有没有巧合呢?不充分吧!那阿森和你一起就调试起来看看内存和监视吧:注意:在内存窗口我们看到是
16进制存储方式,先把我们成员存储进去的bit进行16进制转换,再看内存。
拓展:2进制转16进制方式:
16进制的数字每⼀位是0~9,a ~f的,0 ~9,a ~ f的数字,各⾃写成2进制,最多有4个2进制位就⾜够了,
如:2进制的01101011,换成16进制:0x6b,16进制表⽰的时候前⾯加0x
因此,我们把每个字节(8bit)划分2段4bit,然后再加上0x就可以;
第一个字节是前4位0110–>2^0+ 2^1+ 2^1+ 2^0=6,后4bit为0010–>2^0+ 2^0 +2^1 + 2^0=2,剩下的都是同样方法,00000011表示0x03,00000100表示0x04,接下来看内存调试:
看出内存显示的确是62 03 04,一模一样。说明我们刚刚的方案是正确,符合VS的存储方式的:在一个字节内部存储数据从右向左使用,如果剩余的空间不够,就浪费。
代码输出:

分析结果:
这里可以看出开辟了3个字节,就可以把我们想存储的数据就存好了,如果没有位段的使用,用结构体要开辟4个char类型,多出来一个字节,相对来说节省了空间。
当你读到这里,你已经明白了VS对位段的开辟是怎么样操作的,此时让我们给自己鼓个掌,送给自己,继续加油!
阿森和你再理清这3个字节是不是一次性开辟的存储数据,还是创建完一个字节存储数据,再创建一个字节再存储数据的。
用图更容易理解:

s是编译器一次性开辟好的,然后再存储数据,文章中为了更好的理解他的流程,所以用了一个字节开辟一个字节开辟的存储的数据!

内存调试也可以方便观察:按F10调试内存来看看,给内存输入&s,当调试s的成员进行初始化为0时,内存显示3个字节变红了,都为0,后面cc代表着还未被初始化,为随机值(经典烫烫烫),可以看出在给一个成员s开辟内存空间时,编译器是一下子分配好的,不是开辟一个字节空间就存储数据,内存调试图在下↓

🌉位段的跨平台问题
int位段被当成有符号数还是⽆符号数是不确定的。- 位段中最⼤位的数⽬不能确定。(
16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。 - 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
- 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利⽤,这是不确定的。
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。
🌠 位段的应⽤
下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络的畅通是有帮助的。
IP数据报(IP Datagram)是IP(Internet Protocol)网络层协议传输的数据单元。
网络协议中ip数据报的格式:

IP数据报报头中的许多字段,其值的范围很小,只需要使用少量比特位就可以表示,这就适合使用位段表示。
比如说4位版本号版本号是不是给4bit就可以了?首部长度给4bit,服务类型给8bit,总长度给16bit,包括这个地方的标志位给上3bit就可以了,那像这种是不是实现这位段的形式更好一些?
什么叫ip数据报?简单地说一下,假设呢,你要聊天,说a要发一个信息给b。
假设我们的使用微信,你在微信上发了一个元旦快来啦,之后,你就一下子就发到b手机上去了吗,你只要把它扔到网络上,就发到b的手机去了,不是的。
首先发送数据时,不仅仅发送原始数据,还需要封装额外的控制信息,如版本号、长度、源地址、目的地址等,组成完整的IP数据报,这些控制字段使用位段表示,精确占用需要的比特位数,可以最大限度节省空间。源地址和目的地址决定数据报发往哪里,避免误发。
数据报大小合理,就像网络上车流量合理,可以提高传输效率(如果封装的
13个数据都是int好比许多大车,传输效率慢,合理位段像不同的小车高效运行传输)
小尺寸的IP数据报更利于网络传输。因为网络传输的开销很大程度上取决于数据包的大小。
网络协议定义了数据报的格式,保证发送和接收双方都能正确理解数据内容。使用位段表示IP报头字段,可以有效减小IP数据报的大小,这对网络传输性能和通信效率都很有利。所以,位段就起到了一个很好的编解码方法,它可以帮助IP数据报更高效地使用报头空间,实现报头字段的最优编码。
这也是IP报头设计中广泛使用位段的重要原因。它可以很好地将IP数据报大小控制在一个合理范围内。
🌠位段使⽤的注意事项
位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。
内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。
代码:
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};int main()
{struct A sa = { 0 };scanf("%d", &sa._b);//这是错误的return 0;
}
错误显示图:

正确方法:必须先将输入值存入有地址的普通变量中,然后赋值给位段成员。
例如先scanf输入一个整数到变量b,然后b的某几位赋值给位段成员。
正确代码:
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};int main()
{struct A sa = { 0 };//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}
代码运行显示可运行输入图:

🚩总结
这次阿森和你一起学习什么是位段? 位段的内存分配,VS怎么开辟位段空间呢?位段的跨平台问题,位段的应⽤,位段使⽤的注意事项,阿森将下一节和你一起学习联合体和枚举💗。
感谢你的收看,如果文章有错误,可以指出,我不胜感激,让我们一起学习交流,如果文章可以给你一个小小帮助,可以给博主点一个小小的赞😘,也可以点个小小的关注哦💘

相关文章:
【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇
文章目录 📝前言🌠什么是位段?🌉 位段的内存分配🌉VS怎么开辟位段空间呢?🌉位段的跨平台问题🌠 位段的应⽤🌠位段使⽤的注意事项🚩总结 📝前言 本…...
基于Hexo+GitHub Pages 的个人博客搭建
基于HexoGitHub Pages 的个人博客搭建 步骤一:安装 Node.js 和 Git步骤二:创建Github Pages 仓库步骤二:安装 Hexo步骤三:创建 Hexo 项目步骤四:配置 Hexo步骤五:创建新文章步骤六:生成静态文件…...
7. 结构型模式 - 代理模式
亦称: Proxy 意图 代理模式是一种结构型设计模式, 让你能够提供对象的替代品或其占位符。 代理控制着对于原对象的访问, 并允许在将请求提交给对象前后进行一些处理。 问题 为什么要控制对于某个对象的访问呢? 举个例子ÿ…...
挑战Python100题(6)
100+ Python challenging programming exercises 6 Question 51 Define a class named American and its subclass NewYorker. Hints: Use class Subclass(ParentClass) to define a subclass. 定义一个名为American的类及其子类NewYorker。 提示:使用class Subclass(Paren…...
gin实现登录逻辑,包含cookie,session
users/login.html {{define "users/login.html"}} <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>登录页面</title> </head> <body><form method"post" a…...
云原生Kubernetes:K8S集群版本升级(v1.22.14 - v1.23.14)
目录 一、理论 1.K8S集群升级 2.环境 3.升级集群(v1.23.14) 4.验证集群(v1.23.14) 二、实验 1. 环境 2.升级集群(v1.23.14) 2.验证集群(v1.23.14) 一、理论 1.K8S集群升级 …...
C++面向对象(OOP)编程-位运算详解
本文主要介绍原码、位运算的种类,以及常用的位运算的使用场景。 目录 1 原码、反码、补码 2 有符号和无符号数 3 位运算 4 位运算符使用规则 4.1 逻辑移位和算术移位 4.1.1 逻辑左移和算法左移 4.1.2 逻辑右移和算术右移 4.1.3 总结 4.2 位运算的应用场景 …...
linux运行服务提示报错/usr/bin/java: 没有那个文件或目录
如果是直接从官网下载的jdk解压安装,那么/usr/bin/没有java的软连接,即/usr/bin/java,所以即使在/etc/profile中配置了jdk的环境变量也没用,识别不到。 方法一:用java的执行路径配置/usr/bin/java软连接(优…...
一篇文章教会你数据仓库之详解拉链表怎么做
前言 本文将会谈一谈在数据仓库中拉链表相关的内容,包括它的原理、设计、以及在我们大数据场景下的实现方式。 全文由下面几个部分组成: 先分享一下拉链表的用途、什么是拉链表。通过一些小的使用场景来对拉链表做近一步的阐释,以及拉链表和…...
C/S医院检验LIS系统源码
一、检验科LIS系统概述: LIS系统即实验室信息管理系统。LIS系统能实现临床检验信息化,检验科信息管理自动化。其主要功能是将检验科的实验仪器传出的检验数据经数据分析后,自动生成打印报告,通过网络存储在数据库中ÿ…...
项目应用多级缓存示例
前不久做的一个项目,需要在前端实时展示硬件设备的数据。设备很多,并且每个设备的数据也很多,总之就是数据很多。同时,设备的刷新频率很快,需要每2秒读取一遍数据。 问题来了,我们如何读取数据,…...
音视频技术开发周刊 | 325
每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 AI读心术震撼登顶会!模型翻译脑电波,人类思想被投屏|NeurIPS 2023 在最近举办的NeurIPS大会上,研究人员展示了当代AI更震撼…...
量化服务器 - 后台挂载运行
服务器 - 后台运行 pip3命令被kill 在正常的pip命令后面加上 -no-cache-dir tmux 使用教程 https://codeleading.com/article/40954761108/ 如果你希望在 tmux 中后台执行一个 Python 脚本,你可以按照以下步骤操作: 启动 tmux: tmux这将会创建一个新…...
使用tesla gpu 加速大模型,ffmpeg,unity 和 UE等二三维应用
我们知道tesla gpu 没有显示器接口,那么在windows中怎么使用加速unity ue这种三维编辑器呢,答案就是改变注册表来加速相应的三维渲染程序. 1 tesla gpu p40 p100 加速 在windows中使用regedit 来改变 核显配置, 让p100 p40 等等显卡通过核显…...
巅峰画师Midjourney:新时代的独角兽
介绍 AI绘画领域中,Midjourney处于绝对地位,并且一年时间就登顶。 Midjourney是一家独立的AI研究实验室,探索新的思维媒介,拓展人类的想象力。 它由一个小型的自筹资金团队组成,专注于设计、人类基础设施和AI。 在AI绘画领域,Midjourney取得了非常突出…...
入行 4 年,跳槽 2 次,我摸透了软件测试这一行!
最近几年行业在如火如荼的发展壮大,以及其他传统公司都需要大批量的软件测试人员,但是最近几年的疫情导致大规模裁员,让人觉得行业寒冬已来,软件测试人员的职业规划值得我们深度思考。 大家都比较看好软件测试行业,只是…...
Hive01_安装部署
Hive的安装 上传安装包 解压 tar zxvf apache-hive-3.1.2-bin.tar.gz mv apache-hive-3.1.2-bin hive解决Hive与Hadoop之间guava版本差异 cd /export/software/hive/ rm -rf lib/guava-19.0.jarcp cp /export/software/hadoop/hadoop-3.3.0/share/hadoop/common/lib/guava-27.0…...
解决国内大模型痛点的最佳实践方案
1.前言 自AI热潮掀起以来,国内互联网大厂躬身入局,各类机构奋起追赶,创业型企业纷至沓来。业内戏称,一场大模型的“百模大战”已经扩展到“千模大战”。 根据近期中国科学技术信息研究所发布的《中国人工智能大模型地图研究报告…...
当文字成为雨滴:HTML、CSS、JS创作炫酷的“文字雨“动画!
简介 在本篇技术文章中,将介绍如何使用HTML、CSS和JavaScript创建一个独特而引人注目的"文字(字母&数字)"雨🌧️动画效果。通过该动画,展现出的是一系列随机字符将从云朵中下落像是将文字变成雨滴从天而降,营造出与…...
计算机网络简述
前言 计算机网路是一个很庞大的话题。在此我仅对其基础概述以及简单应用进行陈述。后续或有补充以形成完善的计算机网络知识体系。 一.计算机网络的定义 根据百度词条的描述,计算机网络是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...



